Hello, I am Zongrun Li. I am presently working as a Research Scientist in the Mechanical Engineering Department at Colorado State University, under the supervision of Dr. John Volckens. I received my PhD from Georgia Tech in LAMDA(λ) : Laboratory for Atmospheric Modeling, Diagnostics and Analysis advised by M. Talat Odman and Ted Russell. My research topics including:
  • Coupling fire-behavior model with chemical transport model.
  • Estimation of prescribed fire emissions from remote sensing datasets.
  • Health impacts of prescribed fires.
  • Tradeoffs between wildfires and prescribed fires.
  • Deep learning driven fire and smoke forecast system.

During my PhD program, I also earned a Master of Computational Science and Engineering (CSE) from Georgia Tech, and a Bachelor of Science in Environmental Science and Applied Mathematics from Nankai University.
Zongrun Li

zli867 at gatech.edu

Georgia Tech
Atlanta

Publications

See also Google Scholar

  1. A generalized user-friendly method for fusing observational data and chemical transport model (Gen-Friberg V1.0: GF-1)

    Zongrun Li , Abiola S. Lawal, Bingqing Zhang, Kamal J. Maji, Pengfei Liu, Yongtao Hu, Armistead G. Russell, M. Talat Odman Environmental Modelling & Software , 2026, DOI: https://doi.org/10.1016/j.envsoft.2025.106827

    Cite / PDF

  2. Comparisons of High Spatiotemporal Resolution Air Quality Modeling Frameworks for Prescribed Burning Simulations at a Military Base in the Southeastern United States

    Zongrun Li , Rime El, Susan O’Neill, Yongtao Hu, Haofei Yu, Yunyao Li, David J. Tanner, L. Gregory Huey, Rodney J. Weber, Armistead G. Russell, M. Talat Odman Journal of Geophysical Research: Atmospheres , 2025, DOI: https://doi.org/10.1029/2025JD044677

    Cite / PDF

  3. An investigation of corrective approaches for uncertain winds and analysis of impacts on smoke model performance

    Zongrun Li , Susan M. O’Neill, Rime El Asmar, Yongtao Hu, Adam K. Kochanski, Angel Farguell, Jan Mandel, David J. Tanner, L. Gregory Huey, Armistead G. Russell, Rodney J. Weber, M. Talat Odman Agricultural and Forest Meteorology , 2026, DOI: https://doi.org/10.1016/j.agrformet.2025.110885

    Cite / PDF

  4. Associations between PM2.5 from prescribed burning and emergency department visits in 11 Southeastern US states

    Jennifer D. Stowell, Kamal J. Maji, Zongrun Li , Yongtao Hu, Ambarish Vaidyanathan, Chad Milando, Armistead G. Russell, Patrick L. Kinney, M. Talat Odman, Gregory A. Wellenius Environment International , 2025, DOI: https://doi.org/10.1016/j.envint.2025.109770

    Cite / PDF

  5. Formation of Ozone and PM2.5 in Smoke from Prescribed Burning in the Southeastern United States

    Rime El, Zongrun Li , Haofei Yu, Susan O’Neill, David J. Tanner, L. Gregory Huey, M. Talat Odman, Rodney J. Weber ACS ES\&T Air , 0, DOI: 10.1021/acsestair.4c00231

    Cite / PDF

  6. The Trade-offs between Wildfires and Prescribed Fires: A Case Study for 2016 Gatlinburg Wildfires

    Zongrun Li , Ambarish Vaidyanathan, Kamal J. Maji, Yongtao Hu, Susan M. O’Neill, Armistead G. Russell, M. Talat Odman ACS ES\&T Air , 0, DOI: 10.1021/acsestair.4c00233

    Cite / PDF

  7. Prescribed burn related increases of population exposure to PM2.5 and O3 pollution in the southeastern US over 2013–2020

    Kamal J. Maji, Zongrun Li , Yongtao Hu, Ambarish Vaidyanathan, Jennifer D. Stowell, Chad Milando, Gregory Wellenius, Patrick L. Kinney, Armistead G. Russell, M. {Talat Odman} Environment International , 2024, DOI: https://doi.org/10.1016/j.envint.2024.109101

    Cite / PDF

  8. Estimated Impacts of Prescribed Fires on Air Quality and Premature Deaths in Georgia and Surrounding Areas in the US, 2015–2020

    Kamal J. Maji, Zongrun Li , Ambarish Vaidyanathan, Yongtao Hu, Jennifer D. Stowell, Chad Milando, Gregory Wellenius, Patrick L. Kinney, Armistead G. Russell, M. Talat Odman Environmental Science \& Technology , 2024, DOI: 10.1021/acs.est.4c00890

    Cite / PDF

  9. Impact of the 2022 New Mexico, US wildfires on air quality and health

    Kamal J. Maji, Bonne Ford, Zongrun Li , Yongtao Hu, Leiqiu Hu, Chelsea Eastman Langer, Colin Hawkinson, Srikanth Paladugu, Stephanie Moraga-McHaley, Brian Woods, Melissa Vansickle, Christopher K. Uejio, Courtney Maichak, Olivia Sablan, Sheryl Magzamen, Jeffrey R. Pierce, Armistead G. Russell Science of The Total Environment , 2024, DOI: https://doi.org/10.1016/j.scitotenv.2024.174197

    Cite / PDF

  10. A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires

    R. El, Z. Li, D. J. Tanner, Y. Hu, S. O'Neill, L. G. Huey, M. T. Odman, R. J. Weber Atmospheric Chemistry and Physics , 2024, DOI: 10.5194/acp-24-12749-2024

    Cite / PDF

  11. Predicting PM2.5 levels and exceedance days using machine learning methods

    Ziqi Gao, Khanh Do, Zongrun Li , Xiangyu Jiang, Kamal J. Maji, Cesunica E. Ivey, Armistead G. Russell Atmospheric Environment , 2024, DOI: https://doi.org/10.1016/j.atmosenv.2024.120396

    Cite / PDF

  12. An Analysis of Prescribed Fire Activities and Emissions in the Southeastern United States from 2013 to 2020

    Zongrun Li , Kamal J. Maji, Yongtao Hu, Ambarish Vaidyanathan, Susan M. O’Neill, M. Talat Odman, Armistead G. Russell Remote Sensing , 2023, DOI: 10.3390/rs15112725

    Cite / PDF

  13. Application of an improved gas-constrained source apportionment method using data fused fields: A case study in North Carolina, USA

    Ran Huang, Zongrun Li , Cesunica E. Ivey, Xinxin Zhai, Guoliang Shi, James A. Mulholland, Robert Devlin, Armistead G. Russell Atmospheric Environment , 2022, DOI: https://doi.org/10.1016/j.atmosenv.2022.119031

    Cite / PDF

Projects

  • Corresponding to Comparison of Chemical Transport Model and Observation Derived Ozone-NOx-VOC Isopleths for the South Coast Air Basin of California

  • Corresponding to Comparisons of High-Spatiotemporal Resolution Air Quality Modeling Frameworks for Prescribed Burning Simulations at Military Bases in the Southeastern United States

  • Generate a Json format files for running BlueSky Framework.

  • The is a Python-based function to convert BlueSky pipeline outputs to 4D dimensional point-based fire emissions (TIME × X × Y × LAYERS).

  • The is a Python-based, user-friendly data fusion code. Fuse CMAQ with observational data to reduce CMAQ bias.
  • Burn-type differentiation for satellite-derived fire detection products. Seperate wildfires, Rx fires, and agricultural burning.

Peer Review

  • Reviewer of International Journal of Wildland Fire, 2024
  • Reviewer of ACS ES&T Air, 2024, 2025
  • Reviewer of AGU Advances, 2025
  • Reviewer of Journal of Environmental Management, 2024, 2025
  • Reviewer of Journal of the Air & Waste Management Association, 2025
  • Reviewer of Scientific Reports, 2025

Talks

Plain Academic