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Abstract

Ambient air quality across the southeastern US has improved substantially in recent decades.
However, emissions from prescribed burn remain high, which may pose a substantial health threat.
We employed a multistage modeling framework to estimate year-round, long-term effects of
prescribed burn on air quality and premature deaths. The framework integrates a chemical
transport model with a data-fusion approach to estimate 24-h average PM, s and maximum daily
8-h averaged O; (MDAS8-O;) concentrations attributable to prescribed burn for the period 2013—
2020. The Global Exposure Mortality Model and a log-linear exposure-response functions were
used to estimate the premature deaths ascribed to long-term prescribed burn PM, 5 and MDAS8-O;
exposure in ten southeastern states. Our results indicate that prescribed burn contributed on annual
average 0.59+0.20 pg/m? of PM, 5 (~10% of ambient PM, 5) over the ten southeastern states during
the study period. On average around 15% of the state-level ambient PM,s concentrations
contributed by prescribed burn in Alabama (0.90+0.15 pug/m?), Florida (0.65+0.19 pg/m?3), Georgia
(0.91£0.19 ug/m?), Mississippi (0.65+0.10 pg/m?) and South Carolina (0.65+0.09 pug/m?). In the
extensive burning season (January—April), daily average contributions to ambient PM, 5 increased
up to 22% in those states. A large part of Alabama and Georgia experiences >3.5 ug/m? prescribed
burn PM, 5 over 30 days/year. Additionally, prescribed burn is responsible for an average increase
01 0.3240.12 ppb of MDAB8-0O; (0.8% of ambient MDAS8-Os3) over the ten southeastern states. The



combined effect of prescribed burn PM, 5 exposure, population growth, and increase of baseline
mortality over time resulted in a total of 20,416 (95% confidence interval (CI): 16,562-24,174)
excess non-accidental premature deaths in the ten southeastern states, with 25% of these deaths in
Georgia. Prescribed burn MDAS8-O; was responsible for an additional 1,332 (95% CI: 858—1,803)
premature deaths in the ten southeastern states. These findings indicate significant impacts from
prescribed burn, suggesting potential benefits of enhanced forest management strategies.

KEYWORDS: southeastern US; prescribed burn; chemical transport model; air pollution;
premature deaths



1. Introduction

Wildfires have been growing in size and frequency in the United States (US), paralleling the
extension of the burn weather season, which is characterized by high temperatures and low
humidity (Cunningham et al., 2024; Cromar et al., 2024; Xu et al., 2023). This trend, driven by
climate change, has led to more severe burn weather conditions. Wildland burns—including both
wildfires and prescribed burn account for 44% of the nation’s primary emissions of fine particulate
matter (PM,s) in 2017, in which 32% are due to prescribed fire (USEPA, 2023a). However, in the
Southeastern US, wildland burns contribute 31% of the primary PM, s, in which 81% are coming
from prescribed fire (Cromar et al., 2024; D’Evelyn et al., 2022). The Environmental Protection
Agency (EPA) recognizes the increasing challenges and human health impacts of wildland burns,
and smoke pose in communities all around the country (USEPA, 2023a). Despite stringent controls
and intensive monitoring of the country’s vast forested areas (Burke et al., 2021), the annual
acreage of forest land consumed by wildland burn in the US has doubled in past two decades
(Burke et al., 2023). Controlled prescribed burn are effective in preventing destructive wildfires
and typically emit less PM, s compared to wildfires of an equivalent burn area. Prescribed burn
also supports ecosystem development, restoration, and management of wildland vegetation
(Glassman et al., 2023).

Prescribed burns are low-intensity fires carried out under controlled environmental conditions to
minimize the risk of uncontrolled spread and to enhance smoke dispersion before plumes affect
downwind communities (Baijnath-Rodino et al., 2022; O’Dell et al., 2019). However, prescribed
burns are conducted on a regular basis compared to wildfire events. Prescribed burns accounts for
a significant portion of burn activity in the US, averaging 11 million acres per year. Of this, 70%
occurs in the southeastern US (Kolden, 2019), where the primary fuels found in forests such as
longleaf, slash, and loblolly pine forests with palmetto-gallberry understories in Florida, Georgia,
and South Carolina, pine and mixed hardwood forests in the upper coastal plain of South Carolina,
and shortleaf pine-grass assemblages in Arkansas (Prichard et al., 2017; Reid et al., 2012; Wright,
2013). The annual rate of increase of burn area approximately 0.15 million acres in the
southeastern US (Burke et al., 2023; Kondo et al., 2022). In the southeastern US, prescribed burn
contributes about 10-15% to the annual average ambient PM, 5 levels, which can rise to 20-30%
during the extensive burning season (January—April) (Afrin and Garcia-Menendez, 2020; Carter
etal., 2023).

The contribution of prescribed burn to regional ambient air pollution may offset the air quality
improvements achieved in the US over the past few decades. Consequently, emissions from
prescribed burns are classified as exceptional event pollutants and are not included in ambient air
quality standards (USEPA, 2019). Previous studies estimating the contribution of prescribed burns
to ambient air pollution have primarily focused on PM,s impacts, often overlooking their
contribution to ozone (Os) pollution. Furthermore, these estimates are confined to the extensive
prescribed burning season and not provided a complete year-long picture. Additionally, long-term
exposure to air pollution poses a greater human health risk; however, only a few long-term health
impact assessment studies have been conducted to quantify the premature deaths attributed to
prescribed burn pollution. This gap is primarily due to the challenges in estimating long-term
prescribed burn smoke exposure with high spatial and temporal resolutions (Zhang et al., 2023).
The absence of a comprehensive assessment of the impacts of prescribed burn on both regional



and local air pollution levels hinders the development of evidence-based policies. Such policies
are necessary for using prescribed burn as an effective tool in land management.

To address the evidence gap regarding the impacts of prescribed burn on air quality, we leveraged
recent advancements in chemical transport modeling, the availability of remote sensing data, and
statistical methods. Our aim was to estimate the effects of prescribed burn on regional and local
PM, 5 and O; levels across the southeastern US. Additionally, for contextual understanding, we
employed a standard health impact assessment approach to estimate the excess deaths attributable
to the increased levels of PM,; 5 and O3 resulting from prescribed burn.

2. Materials and Methods

We designed a multistage modeling framework to estimate year-around prescribed burn impacts
on air quality and health in ten southeastern US states (i.e., Alabama, Florida, Georgia, Kentucky,
Mississippi, North Carolina, South Carolina, Tennessee, Virginia and West Virginia) from 2013
to 2020. This framework consists of: (a) identification of daily prescribed burn information from
the satellite-derived product Burn INventory from NCAR (FINN); (b) simulation of prescribed
burn contributions to 24-h average PM, s and daily maximum 8-h average O; (MDAS-O3) using
the Community Multiscale Air Quality (CMAQ) model; (¢) data-fusion to integrating CMAQ
simulated PM, s and MDAS8-0O; with daily observations to reduce model uncertainly; and (d) health
impact assessment to estimate excess premature deaths associated with the change in PM; 5 and
MDAS8-Oj; exposure due to prescribed burn (Figure S1).

2.1. Prescribed burn identification and emissions.

The permit records often provide more precise measurements of burned areas compared to satellite
data, however a complete record of prescribed burn in southeastern states is not available.
Additionally, the information contained in burn permit records, such as location, date and time,
may sometimes be incorrect, leading to potential misidentification of burn locations and sizes
(Afrin and Garcia-Menendez, 2020; Jaffe et al., 2020). We bridged this data gap by using FINN
burn area data (version 2.5), a high-resolution satellite-based remote sensing product. FINN
utilizes MODIS and VIIRS active burn data derived from thermal anomalies and combines them
with land cover data to estimate daily burn area and emissions (Li et al., 2020). However, FINN
does not distinguish between prescribed burn, wildfires, or agricultural burns. In our study, we
utilized the prescribed burn data provided by Li et al. (2023). In that study, they implemented a
burn-type differentiation algorithm to distinguish the types of fire in FINN. The algorithm utilizes
the NLCD land use data to identify fires on agricultural lands as agricultural burns and employs a
spatiotemporal clustering algorithm to estimate the durations of remaining fires. Then, it assumes
that fires that last one day are prescribed burns and those that last longer are wildfires. Since permit
records provide more precise measurements of burned areas, we employed a linear regression
model to calibrate the FINN-based burned area data. This calibration was done using available
permit records in Florida, Georgia and South Carolina, hoping to enhance the accuracy of burned
area information over the entire domain. However, note that these permit burn area records can
also contain inaccuracies, such as underreported/overreported (Huang et al., 2018) and that the
three states mentioned above may not represent the rest of the Southeastern US. In addition to
burned areas, FINN also provides fire emissions; however, instead of using those estimates we



chose to recalculate the emissions using the adjusted burned areas described above in the BlueSky
smoke modeling framework (Michael et al., 2023). There were several reasons for this decision.
First, while FINN uses a more generalized classification for the fuels because of its global nature,
BlueSky utilizes a more detailed classification that is customized for the fuels in the US. Second,
BlueSky considers the meteorological conditions and fuel moistures to calculate the amounts of
fuels consumed while FINN infers consumptions from fire radiative power (Ottmar et al., 2007).
Third, the emission factors in BlueSky were recently updated with the most up to date information
(Prichard et al., 2020a). Note that despite all these differences in methodology, we found a high
correlation and strong agreement between the daily total emissions calculated using BlueSky and
those from FINN (Li et al., 2023). Finally, FINN emissions are daily and two-dimensional, but air
quality models require hourly and three-dimensional emission inputs. Bluesky is equipped with
empirical time profiles that differentiate between wildfires and prescribed burns and plume-rise
schemes that have been tested with data from prescribed fire experiments (Liu, 2014).

2.2. Air quality model configurations.

Our air quality modeling system consisted of the Weather Research and Forecasting Model (WRF;
version 3.9), a numerical weather prediction model, and CMAQ (version 5.3), a chemical transport
model (CTM). CMAQ combines emission and weather inputs and models atmospheric transport,
dispersion, chemical transformation, and deposition processes to simulate hourly pollution levels
(Appel et al., 2021). The meteorological inputs to CMAQ were developed using the Weather
Research and Forecasting (WRF) model version 3.9.1.1 (Skamarock et al., 2008) with NAM
analysis and ADP observational datasets (Hu et al., 2022). The WRF model was configured with
the RRTMG scheme for radiation, the Kain-Fritsch scheme for cumulus parameterization, the
Morrison (2 moments) scheme for microphysics, the ACM2 Planetary Boundary Layer (PBL)
scheme and the Pleim-Xiu Land Surface Model (LSM). We used the Carbon Bond 6 (CB6) gas
phase chemistry mechanism and the AEROG6 aerosol module in CMAQ. Our modeling domain,
shown in Figure S2, had a horizontal resolution of 12 kmx12 km, covering the southeastern US
(29.41 to 41.78°N and -90.36 to -70.91°W) with 123x138 grid cells. We used the National
Emission Inventory (NEI) for all anthropogenic emissions other than prescribed burn emissions.
As for natural emissions, we used the Biogenic Emission Inventory System, version 4 (BEIS4) for
biogenic emissions and the built-in windblown dust and sea spray aerosol emissions in CMAQ.
To quantify the prescribed burn impacts, we generated two sets of concentration fields from two
CMAQ simulations between January 2013 and December 2020: a baseline simulation with all
emissions (C3;;) and a second simulation excluding prescribed burn emissions (C;,,_pg). We then
calculated the prescribed burn contributed pollution as:

ACpp(x,t) = Cou(xt) — Cro_pp(x,t) (1)
where superscript s indicates simulated concentration and x and ¢ denote space and time variability.
2.3. Data fusion method:

Modeled concentrations have uncertainties related to emissions inputs, meteorological parameters,
and physical/chemical transport processes; therefore, they differ from in-situ measurements
(Friberg et al., 2016; Senthilkumar et al., 2019). To reduce the model biases and error, we followed



Friberg et al. (2016) and fused observational data from fixed air quality monitors with daily
average PM, s and MDAS-O; fields simulated by CMAQ. Across eight years of observations at
252 PM; 5 and 258 Oz monitors in the study area, with 437 thousand PM, s and 513 thousand
MDAS-Oj; daily observations were obtained from EPA-AQS (Environmental Protection Agency-
Air Quality System). The data-fused concentration fields (C?,,) are produced for pollutant p by a
regression model as described in Maji et al. (2024).

Finally, observation-adjusted no-prescribed burn concentration (AdjCh,_pp) and observation-
adjusted prescribed burn impact (AAdjChp) fields were generated as follows:

AdjClho_pp(x,t) = Cho—pp(x,t) X [Chpy(x,t)/Con(x,t)] 3)
AdjACHp(x,t) = ACH(x,t) X [Chy(x,t) /Cou(x,0)] 4)
2.4. Premature deaths assessment:

The calculation of excess deaths attributable to long-term exposure to pollutant p from prescribed
burn smoke within grid cell (x) at time (¢) follows a well-established method to estimate air
pollution related mortality (Anenberg et al., 2010; Neumann et al., 2021):

AMpp(xt) = Xa,alAF, , oo AF

Chuxt)

daAdic? o] X Baa(6t) X Popa(xt) (5)
where d represents a specific disease (e.g., stroke, lung cancer etc.) while a denotes specific age
group, AF is the attributable fraction at annual average concentration level, and B ,(x,t) X Pop,
(x,t) is the of total disease-specific ‘Reported Mortality’. Since mortality is typically recorded at
the state or county-level, however as county-level baseline value for all disease are not available,
a common approach to estimate baseline mortality at the grid cell level is to scale the reported
mortality to the grid cell population (Pop,) data by using the baseline mortality rate (By, =
Reported Mortality, ./Pop,) at state levels. State-level mortality is obtained by the sum of
AMP 5 ( x,t) for each grid cell in a state within the study domain. AF can be estimated for each age
group a and disease d as:

AF g zr = (1=RRq,0(C7))/RRqo(CP) (©6)

with RR;,(CP) being the relative risk (or hazard ratio) for pollutant p at the annual average
concentration level CP.

We recognize that the mortality risk associated with chronic exposure to prescribed burn PM; 5
may differ from that linked to all-source PM, 5. However, since there is a lack of specific studies
addressing the increased mortality risk from chronic exposure to prescribed burn PM, s we opted
to use the Global Exposure Mortality Model (GEMM) as a practical approach to estimate
premature deaths attributable to chronic exposure (Burnett et al., 2018). Our method involved two
GEMM modules: the GEMM-NCD+LRI module to estimate non-accidental deaths
[predominantly due to noncommunicable diseases (NCDs) and lower respiratory infections
(LRIs)], and the GEMM-5COD model to calculate five types of disease-specific deaths [(ischemic



heart disease (IHD), stroke (CEV), chronic obstructive pulmonary disease (COPD), lung cancer
(LC), and lower respiratory tract infections (LRI)]. For comparison, we also estimated these five
disease-specific deaths using the Integrated Exposure Response (IER) model (Burnett et al., 2014).
Additionally, to estimate all-cause mortality attributed to prescribed burn MDAS8-O; exposure, we
employed a log-linear concentration response function (CRF) (Maji et al., 2023; Pozzer et al.,
2023; Sun et al., 2022). The disease-specific and state-specific baseline mortality for age group >
25 years were obtained from the Global Burden of Disease (GBD) results tool (IHME, 2019). The
spatial distribution of the population with 1 km? resolution is taken from the Gridded Population
of the World (GPW) dataset (WorldPop, 2023) and mapped on our 12-km CAMQ resolution grid.

3. Results and Discussion

The prescribed burn area exhibited high variation across different states. Prescribed burn
constituted an estimated 79% of the total number of burns in Alabama, 76% in South Carolina,
and 66% in Georgia. Between 2013 to 2020, 25.1 million acres (~3 million acres/year) of land
were treated as prescribed burn in the study domain (Figure 1 and Figure S3), in which about 55%
area burn during the extensive burning season (4 months), while 21 and 24% area burn during low
burn season (5 months) and moderate burn season (3 months), respectively. Of the total prescribed
burn area, 83.7% on private lands with the rest on federal lands (Figure S4 to S6). The seasonal
patterns of prescribed burns on federal and private lands show similar trends, with the most intense
burning activity occurring between January and May. Prescribed burning contributed to emissions
of about 3.28 million tons of PM, s, 3.50 million tons of volatile organic compounds (VOCs), and
0.37 million tons of nitrogen oxides (NOx), during the study period. The years 2014 and 2017 saw
larger total burn area, 3.55 and 3.74 million acres respectively, and emissions accounting for about
30% of total prescribed burn emissions during these two years (Figures S7-S9 and Table S2). The
year-to-year differences are due to meteorological conditions (some years have more favorable
weather for burning), policy and management practices (e.g., there were more burns in 2017 in the
wake of wildfires in the Southern Appalachian Mountains) and programmatic support and funding
(fire management funding can fluctuate from year to year) (Melvin, 2018; Boby et al., 2023).

Figure 1. Spatial distribution of total prescribed burned area from adjusted-FINN (top) and
corresponding total emissions of PM,s, VOCs and NOy (bottom) during 2013-2020
(unit is acres for burned area and tons for PM, 5, VOCs and NO,) emissions.

3.1. Assessing Model Performance

Model evaluation indicated that CMAQ generally underestimated PM,s (by ~21%) and
overestimated MDAS8-O; (by ~23%) with respect to EPA measurement over the study period in
ten southeastern states. Data-fusion reduced PM, s underestimation to 0.6% and MDAS-O;
overestimation to 0.3%. R? over the study domain was 0.65 (root mean squared error (RMSE) =
3.04 ug/m3; normalized mean error (NME) = 24%, normalized mean bias (NMB) = -10%) for
PM, s, and 0.86 (RMSE = 4.29 ppb; NME = 8%, NMB = -1.5%) for MDAS8-Os3, (Figure S10 and



Table S3), above typical values for fields developed using only CTMs (Emery et al., 2017) and
satellite-based PM, 5 data (van Donkelaar et al., 2010).

The data-fusion method performance was also evaluated using a comprehensive 10-fold cross-
validation analysis. The results (Table S3) indicated data-fusion performed better compared to
CMAQ simulation, with larger R? and smaller MB, RMSE and NMB when compared to EPA
monitor data. All performance metrics for PM; 5 (R>=0.64, MB=-0.39 ug/m3, RMSE = 3.53 pg/m?,
NMB = -4.69%), and MDAS8-O; (R>=0.82, MB= -1.73 ppb, RMSE = 4.18 ppb, NMB = -4.36%)
met the criteria and goals for CTMs (Emery et al., 2017). While data-fusion showed improved
statistical performance, potential biases may exist due to the inherent limitations of both data-
fusion and EPA data’s ground truthing.

3.2. Impacts on Air Quality

The study measured the contribution of prescribed burn to annual and seasonal PM; s and MDAS-
O; levels by aggregating daily data across the ten southeastern states and individual states. The
simulated annual mean prescribed burn PM; s and MDAS8-Oj3 show significant temporal and spatial
variation, in alignment with the burned areas (Figure 2 and Figure 3). The locations with the
highest annual average PM, s levels (> 1.4 pg/m?®) from prescribed burns are associated with areas
of extensive prescribed burning, with impacts often extending across large regions. These hotspot
locations vary annually based on the extent of the burned area, as prescribed burns are typically
repeated every two to three years. However, they are primarily concentrated along the Alabama-
Georgia border. Certain grids experienced daily PM, 5 levels of around 46 ug/m?* and MDAS8-O;
levels of 55 ppb from prescribed burn (Figure S11).

Figure 2. Spatial distributions of yearly average prescribed burn specific PM; 5 concentrations
(ng/m?) during 2013-2020.

Figure 3. Spatial distributions of yearly average prescribed burn specific MDAS-O;
concentrations (ppb) during 2013-2020.

On average, prescribed burn contributed 0.59+0.20 pg/m? of PM, s across the ten southeastern
states during 2013-2020, accounting for ~10% of the ambient PM,s. At the state-level,
contribution of average prescribed burn PM,; s was considerably higher in Alabama [0.90+0.15
(0.91) png/m3], Florida [0.65+0.19 (0.64) ug/m?3], Georgia [0.91+0.19 (0.91) ug/m?3], Mississippi
[0.65+0.1 (0.64) pg/m?], and South Carolina [0.65+0.09 (0.65) pug/m’] [meantSD (median)],
compared to domain average (Figure 4). These levels accounted for approximately 15% of ambient
PM, 5 in each respective state. In other states, the contribution of prescribed burn to ambient PM; 5
was less than 6%. Notably, Alabama and Georgia recorded the highest annual average level of
PM, 5 contribution from prescribed burn, exceeding 1.0 ug/m?3 in 2015 and 2017 (Table A.1). The
highest annual average prescribed burn PM,s were recorded in Chattahoochee and Marion



Counties (central Georgia), and Russell County (southeastern Alabama), reaching an average of
1.20 pg/m?3 during 2013-2020 (Figure S12).

Figure 4. Boxplot of state-specific prescribed burn contributed daily average PM, 5 (top) and daily
MDAS8-O; (bottom) from 2013-2020. The top and bottom of the box indicate the 75%
and 25% percentile of yearly values. The vertical solid lines indicate the interquartile
range of yearly values. The horizontal blue line is the annual mean, and the top and
bottom pink stars indicate the 95" and 5™ percentile of yearly values. The long black
horizontal line indicates the average prescribed burn PM,; s and MDAS8-O3 over the ten
southeastern states from 2013-2020.

During the extensive burning season from 2013 to 2020, the average contribution of prescribed
burn PM, 5 was higher in Alabama [1.15+0.26 (1.13) pg/m3], Georgia [1.41+0.36 (1.40) ug/m?],
and South Carolina [1.05+0.15 (1.03) ug/m?] (Figure 5 and Table S4). In these states, prescribed
burn contributed over 75% to total daily PM; s on the days with highest burn area, compared to an
average of 22% during the extensive burning season. For example, on March 23, 2016, when the
highest burned area was reported as 63,710 acres, prescribed burn contributed around 9.0 pg/m?
of PM, 5 in Georgia, North Carolina, South Carolina, and Virginia, comprising approximately 75%
of the ambient PM, 5 (Figure S14). In 2017 extensive burning season, the average prescribed burn
PM, s was 2.05+0.57 (2.11) ug/m3 in Georgia, highest among all states. During the moderate
burning season (October-December), we observed that the contribution of prescribed burn to PM, 5
was higher than the annual average in all states, with particularly significant contributions in
Alabama [1.1940.18 (1.21) pg/m?], Georgia [1.00+0.23 (1.02) pg/m?3], and Mississippi [0.93+0.15
(0.93) ug/m3]. These levels accounted for approximately 20% of the ambient PM,s in each
respective state during this period (Figure 5). Notably, in Mississippi and Tennessee, the
prescribed burn PM; s levels during October-December consistently surpassed the levels during
the January-April. This trend may be attributed to those states’ practice of conducting a majority
of their prescribed burn in the October-December season (Table S6).

From 2013 to 2020, prescribed burn contributed to an average increase of 0.33+0.12 ppb in MDAS-
O; levels across the ten southeastern states, representing ~0.8% of the ambient MDAS-Oj3. At state-
level, prescribed burn was responsible for an average increase in MDAS8-O3 by 0.42+0.09 (0.40)
ppb in Alabama, 0.46+0.12 (0.44) ppb in Florida, 0.51+0.13 (0.51) ppb in Georgia, and 0.36+0.05
(0.35) ppb in South Carolina, accounting for about 1.0% of ambient MDAS8-O; (Table 2). The
highest prescribed burn contributions to MDAS8-O; were observed in Thomas and Grady Counties
(in southwestern Georgia) and Gadsden County (in northwestern Florida), reaching average 1.00
ppb during the study period. The counties with elevated MDAS-O; levels are approximately 180
km away from the counties with high-levels of prescribed burn PM, 5. This is because PM, 5 peaks
primarily due to burn emissions, while O; is formed during transport, with peak concentrations
occurring farther away, influenced by meteorological conditions.



During the extensive burning season, the contribution of prescribed burn to MDAS8-Oj5 is higher
(0.56+0.23 ppb), accounting for ~2.2% of ambient MDAS8-O; (Table S7). Similar to the highest
contribution of daily average prescribed burn PM, s, high MDAS8-O; levels were also recorded on
days with the largest areas burned. For instance, on March 23, 2016, prescribed burn was
responsible for an increase of around 3.5 ppb MDAS-O; in Georgia, North Carolina, South
Carolina, and Virginia, which was about 8% of the ambient MDAS-O; (Figure S13 and S14).
During the moderate burning season, we noted that prescribed burn MDAS-O; levels were
comparatively lower than those observed during the extensive burning season. However, the
average contributions in Alabama [0.49+0.10 (0.47) ppb], Florida [0.40+0.10 (0.40) ppb], and
Georgia [0.49+0.12 (0.49) ppb] were still noteworthy. These contributions accounting for
approximately 1% of the ambient MDAS-O; in these states are notable especially since the winter
period is generally less favorable for O; formation (Table S9). During the summer (May-
September), ozone-season restrictions on certain open burning activities lead to a reduction in
prescribed burn contributions to PM, s and MDAS-0O;, although some understory prescribed burn
still contribute very low-levels (Table S5 and Table S8).

In 2020, in Alabama Georgia, Kentucky and Mississippi, prescribed burn PM, s and MDAS-O;
levels were higher during the moderate burning season compared to the extensive burning season.
This shift might be linked to COVID-19 lockdown restriction or higher-than-usual rainfall during
the extensive burn season (NOAA, 2020). As a result, most prescribed burning plan was
rescheduled from January-April to October-December, leading to a 10% higher prescribed burn
area in moderate burn season.

Figure 5. Spatial distributions of seasonal average prescribed burn specific PM, s (ug/m?) (top)
and MDAS-Oj; concentrations (ppb) (bottom) during 2013-2020. January—April is the
extensive burning season, May—September is the low burning season and October—
December is the moderate burning season.

3.3. Impact of Prescribed Burn on Air Quality Relative to NAAQS

We assessed the impact of prescribed burn relative to the national ambient air quality standards
(NAAQS). We defined a prescribed burn ‘smoke-day’ as when prescribed burn contributed >10%
of NAAQS, i.e., > 3.5 ug/m? to ambient daily average PM, s concentration (NAAQS: 35 pug/m?)
and > 7 ppb to ambient MDAS8-O; (NAAQS: 70 ppb). Out of 252 AQS monitoring sites, 22 (~9%)
experienced over 15 smoke-days/year and 46 sites (~18%) experienced over 10 smoke-days/year
due to prescribed burn PM; 5. In 2017, the year with the highest burn area, 33 sites primarily located
in Georgia, Alabama and South Carolina (Figure S15) experienced at least 20 smoke-days,
indicating a hotspot location for the impact of prescribed burn PM,s in the southeastern US.
Among these 33 sites, the distance to the nearest burn location ranged from 914 meters to 11,931
meters. The impact of prescribed burn on air quality was highest during the extensive burning
season, with 15 sites in Georgia significantly affected (=15 smoke-days/year) by prescribed burn.



Over the eight years of the study, only 11 sites, located in southwestern Georgia and northwestern
Florida, experienced more than 20 smoke-days due to prescribed burn MDAS-Os.

During the study period, we observed significant contributions of prescribed burn to the PM; 5
levels in several states: 89 smoke-days in Alabama, 158 in Georgia, 112 in Tennessee, 91 in North
Carolina, and 72 in South Carolina. In terms of MDAS-Oj; levels, there were 67 smoke-days in
Alabama, 67 in Georgia, 86 in North Carolina, and 83 in South Carolina. At grid-level, we
observed large parts of Alabama and Georgia experiencing over 240 smoke-days (on average 30
days/year) due to prescribed burn PM,; and a significant portion of Georgia and Florida
experiencing over 40 smoke-days (on average 5 days/year) due to prescribed burn MDAS-O;
(Figure 6 and S16).

Figure 6. Distributions of the total smoke-days due to prescribed burn PM; s (left) and MDAS-
O3 (right) during 2013-2020. We defined a prescribed burn smoke-day as when
prescribed burn smoke contributed >10% of NAAQS, i.e., > 3.5 ug/m? to 24-hr
average PM, s mass concentration (NAAQS is 35 pg/m?) and > 7 ppb to MDAS-O;
(NAAQS is 70 ppb).

3.4. Impact on Excess Premature Deaths

Our analysis indicates that premature deaths due to prescribed burn-related smoke exposure are
influenced by various factors, including the area burned, population dynamics and state-level
baseline mortality over time. In the ten southeastern states under study, with a population of 62
million, the average population-weighted exposures to prescribed burn PM, s and MDAS-O; were
0.61 pg/m3 and 0.31 ppb, respectively. The average population-weighted exposures were notably
higher in Alabama (0.88 pg/m? and 0.38 ppb) and Georgia (0.88 pg/m? and 0.46 ppb). The highest
population-weighted exposure to prescribed burn PM;s occurred in 2017 across the ten
southeastern states, with an average of 0.75 pg/m?. Alabama and Georgia experienced even higher
levels in 2017, at 1.04 pg/m? and 1.15 pg/m?3, respectively. Conversely, the highest population-
weighted exposure to prescribed burn MDAS8-O; was found in 2014, averaging 0.41 ppb across
the ten southeastern states, with peak levels of 0.62 ppb in Florida and 0.60 ppb in Georgia. It is
important to note that these population-weighted values are lower than the annual average
prescribed burn contributed pollution concentrations, largely because the burn areas are typically
situated away from densely populated regions.

Across the ten states from 2013-2020, the total excess non-accidental premature deaths attributed
to prescribed burn PM, s, as estimated using the GEMM-NCD+LRI model, was 20,416 (95%
confidence interval (CI): 16,562-24,174). This accounted for 10.4% of the total non-accidental
premature mortality attributable to ambient PM,s. For comparison, using the GEMM-5COD
model, the total five-cause specific premature death was 13,642 (95% CI: 9,343—-17,709), and
using the IER model, it was 8,611 (95% CI: 3,669-11,318) for the same period. Previously
unaccounted non-communicable diseases (other-NCD) (GEMM-NCD+LRI minus GEMM-
5COD) connected to 6,774 (33%) premature deaths from prescribed burn PM, s. Ischemic heart



disease (IHD) was the biggest cause of premature death, accounting for 42% in the GEMM-5COD
model and 39% in the IER model (Table S2). The year 2017 witnessed the highest number of
prescribed burns PM, s-attributed non-accidental premature deaths [3,397 (95% CI: 2,753—4,025)],
a consequence of the highest burn area and associated increased exposure to prescribed burn PM, s
(Table 3). In terms of regional impact during 2013-2020, Georgia accounted for 24% of the total
excess non-accidental premature deaths [4,974 (95% CI: 4,036-5,887)], followed by North
Carolina with 16% [3,229 (95% CI: 2,620-3,822)], and Alabama with 12% [2,454 (95% CI:
1,991-2,906)].

During 2013-2020, prescribed burn MDAS-Oj attributed long-term exposure was responsible for
an estimated 1,332 (95% CI: 858-1,803) excess all-cause premature deaths across the ten states.
This accounted for 2.6% of the total ambient MDAS8-Oj attributed all-cause premature mortality.
Of these excess all-cause deaths, Georgia and North Carolina accounted for significant portions,
with 334 (95% CI: 216—453) and 210 (95% CI: 136-285) deaths, respectively. The highest number
of all-cause deaths attributable to prescribed burn MDAS8-O; exposure was estimated in 2014 and
2017, with 209 premature deaths. Notably, the instances of high premature deaths were
predominantly in regions of higher population density, in contrast to the areas with elevated
concentrations of prescribed burn smoke (Figure 7).

Figure 7. Distributions of premature mortality due to prescribed burn smoke PM, s exposure
(left) and MDAS8-O5 exposure (right) at the gridded-level (12 km?). The estimates of
premature mortality are reported as the sum of annual values over 2013-2020. The
concentration-response relationship from GEMM-NCD+LRI was used for PM,; 5 and
Sun et al. (2022) study for MDAS-Os.

3.5. Limitations, Knowledge Gap and Future Study

This study utilized a unique clustering algorithm to identify prescribed burn information from the
satellite-based fire product, applied a CTM followed by data-fusion to assess the contribution of
prescribed burn to air quality, and performed a 10-fold cross-validation for model performance
evaluation. It also explored potential premature death impacts of prescribed burn-related pollutions
exposure in the southeastern US using well-established methods, as well as a sensitivity analysis
assessing PM, s-associated mortality using various CRF models. However, the study faced three
major uncertainties and limitations: (1) reliance on satellites to identify prescribed burn; (2)
potential overestimation or underestimation of emissions by the BlueSky model, and (3) the
assumption of equal risks for prescribed burn-specific PM, 5 and PM, 5 from all other sources.

We utilized the FINN data for daily burn area and burn location information, which is based
on thermal anomalies detected by MODIS and VIIRS satellites (Wiedinmyer et al., 2023). A
significant drawback of this thermal anomaly detection method is its potential to miss smaller or
understory burns. Additionally, prescribed burns, which are typically of low intensity, pose further
challenges for satellite detection. Factors such as cloud cover and the timing mismatch between
peak burn periods and satellite overpasses further reduce the probability of detection (Nowell et



al., 2018). Consequently, relying solely on thermal anomaly detection may not fully capture all
fire events, particularly prescribed burn (Larkin et al., 2020). Moreover, the clustering algorithm
employed in this study occasionally misclassifies wildfires as prescribed burn, particularly when
their duration is shorter than one day (Li et al., 2023).

The relationship between prescribed burn emissions and corresponding atmospheric pollutants is
nonlinear. Therefore, any difference in emissions can lead to significant changes in exposure and
associated premature deaths (Clappier et al., 2017). For instance, Koplitz et al. (2018) observed
that the Global Burn Emissions Database Version 4.1 (GFEDv4) estimates of burned area for June
2011 were 40% higher than those from FINN over CONUS; however, total organic carbon (OC)
emitted by wildfires was two times higher in FINN (0.32 Tg) compared to GFEDv4 (0.15 Tg OC).
Also, FINN and GFEDv4 do not exhibit similar seasonal patterns (Larkin et al., 2020).
Additionally, Zhang et al. (2014) found that, depending on the inventory used, PM, s emissions
from wildland fires in the same region (northern sub-Saharan Africa in this case) could differ by
factors of 2—4 annually, and by 8-12 for a specific burn event. However, our estimated total
prescribed burn emission of PM, s in 2020 (358 thousand tons) closely aligned with what was
reported (334 thousand tons) by the National Emissions Inventory (NEI) for the same year
(USEPA, 2023b).

There is significant uncertainty in emissions inventories; examining pollution concentrations from
different prescribed burn emission inventories can help to understand the bounds of that
uncertainty. Increasing model grid-resolution may also improve performance and should be
explored in future studies (Li et al., 2022). The non-CTM-based fusion models to estimate smoke
PM, s levels have been reported and they agreed better with observation than CTM, however they
are not able to capture the detailed spatial gradients of the smoke PM, s (Childs et al., 2022; Zhang
et al., 2023). The lack of near-burn observations to be included in model training can also be
attributed to the underestimation of peak smoke PM, s concentrations in these studies where CTMs
predicted lower domain-wide average concentrations than the non-CTM models (Kelly et al.,
2021). Qiu et al. (2024) observed that in the western US, CTMs overestimate PM, 5 concentrations
during extreme wildfire smoke episodes in 2020 by up to 3-5-fold, while machine learning (ML)
estimates are largely consistent with surface measurements. However, in the eastern US, where
smoke levels were much lower in 2020, CTMs show modestly better agreement with surface
measurements.

The mortality outcomes related to prescribed burn smoke exposure in this study differ from
previous research due to varying choices in the selection of CRFs. We used CRFs from GEMM
(Burnett et al., 2018) and IER model (Burnett et al., 2014), which commonly hypothesize that
PM, s components are equally toxic, regardless of their source. Existing literature is mixed on
whether exposure to wildland fire smoke has different health impacts than exposure to air pollution
from other sources, as wildland fire PM, 5 has different composition, and exposure patterns (such
as episodic versus consistent exposure) from other sources (Black et al., 2017; DeFlorio-Barker et
al., 2019). Some studies found that wildland fire smoke might be more toxic as compared to
emissions from other sources like industries and power generation. For instance, Aguilera et al.
(2021) reported that exposure to wildfire smoke could lead to a tenfold increase in the risk of
respiratory hospitalizations, relative to other PM,; 5 sources that may lie, in part, with the high
content of black carbon (BC) and OC and high aromaticity of wildfire PM, 5. Similarly, Wei et al.



(2023) observed an annual increase in BC-to-PM, 5 mass ratio across the US, largely due to rising
wildland fire emissions, hinting at potentially higher PM, s toxicity. Past studies have often relied
on non-source-specific concentration-response-coefficients (CR-coefficients) for wildland fire
PM, s-attributed premature deaths estimations, due to the scarcity of epidemiological studies on
PM, 5 from prescribed burn and associated deaths (Carter et al., 2023; Ford et al., 2018; Pan et al.,
2023; Wei et al., 2023). The relative risk estimates from Krewski et al. (2009) have been
extensively used for estimating excess long-term all-cause mortality due to wildland fire PM, s.
Using the study, we estimated a total of 10,908 deaths (95% CI: 7,347-14,397) during 2013-2020
in ten southeastern states, aligning with IER and GEMM-5COD model results. Ma et al. (2023)
found an association between long-term wildfire PM, 5 exposure and all-cause mortality, with a
0.14% increase in mortality per 1 pg/m? rise of wildfire PM,s. Applying this association to
prescribed burn, we estimated 2,623 all-cause deaths (95% CI: 2,061-3,184) during the study
period, which is much lower than any other selected model in this study.

Previous studies have primarily investigated short-term premature mortality linked to PM; s
exposure from prescribed burns. For instance, during a 15-day study period in 2012, in Northern
California, short-term exposure to 0.26 pg/m? of prescribed burns PM, s was estimated to cause 15
premature deaths (~6 deaths per million acres of burn) (Kiely et al., 2024). Maji et al. (2024)
reported 444 premature per year (~200 deaths per million acres of burn) attributed to short-term
prescribed burn PM, 5 exposure to 0.94 pg/m? across the Georgia and Surrounding Areas (US)
during 2015-2020. The current uncertainty in the impacts of PM; 5 and MDAS8-O; from prescribed
burn on premature deaths poses a significant challenge in health risk analysis. This underscores
the need for further studies on the health effects and toxicity of prescribed burn’s pollution versus
other sources of pollution. Future research should aim to develop a CR-coefficient specific to
prescribed burn PM, 5 to improve the accuracy of health impact assessments.

Wildfire smoke can travel long distances, carrying O; precursors that can be advected into marine
environments (Schneider et al., 2024). Studies indicate that O; formation from wildfire smoke can
increase rapidly over oceanic or estuarine waters due to inhibited deposition, shallower boundary
layers, and emissions from ships (Pan and Faloona, 2022). Our findings reflect similar behavior of
O; over the coastal regions of Georgia, South Carolina, and North Carolina, where prescribed burn
can elevate O3 levels up to ~24 ppb. Likewise, prescribed burn contributed to an increase of ~18
ppb in O; levels along the Chesapeake Bay shoreline (Figure S17).

As prescribed burn smoke exposure is anticipated to increase in the future (Swain et al., 2023),
and due to growing concern of public health associated with wildfire smoke exposures, there is
growing interest to reduce the health-related damages from wildfire events (Cromar et al., 2024;
Jonko et al., 2024). The goals of the current actions are to re-introduce smaller and more frequent
fires (via prescribed burning) to help reduce the occurrence of large and high-intensity fires
(Lydersen et al., 2017; Prichard et al., 2020b). Multiple studies have acknowledged the benefits of
fuel reduction via prescribed burning in mitigating wildfire risk but have also highlighted the
dangers of introducing additional treatment-related smoke (Jones et al., 2022; Tubbesing et al.,
2019). Such studies have called for increased quantification of air-quality and health trade-offs in
forest and fire management decision-making (Schollaert et al., 2023).



Wu et al. (2023) found that, the areas in conifer forests in California, US, that have recently burned
at low intensity are 64.0% less likely to burn at high intensity in the following years relative to
unburned areas. Schollaert et al. (2023) reported that treating 4% of the landscape annually (~3.4%
thinning and 0.6% prescribed burns) in the ~1 million ha Tahoe—Central Sierra Initiative area in
California could reduce total PM; s smoke concentration by approximately 60% compared to a
business-as-usual scenario over a 40-year period. Simulating a 11,220 km? wildfire burn area in
Northern California under prescribed fire conditions. Kiely et al. (2024) reported a 52% reduction
in PM, 5 emissions, decreasing from 0.27 to 0.14 Tg. Similar findings have been noted in previous
studies, where prescribed fires were shown to reduce future wildfire intensity and frequency,
thereby decreasing wildfire emissions, as wildfires emit significantly higher amounts of PM, s,
with average emission factors ranging from 3 to 20 times greater than those of prescribed fires
(Kiely et al., 2024; Kramer et al., 2023; Rosenberg et al., 2024; Williamson et al., 2016). However,
the 2019-2020 catastrophic Black Summer wildfires in eastern Australia raised questions about
the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions
(Clarke et al., 2022).

Despite some uncertainties, our data links prescribed burn to air quality (Figure S18 and S19) and
reveals that exposure to prescribed burn smoke increases burden of premature mortality. These
findings highlight the need for targeted public health advisories and emergency response strategies
in the southeastern US during high burning days. This study underscores the need for improved
air quality management strategies and stronger environmental health policies that consider
prescribed burn impacts in urban and rural planning.

4. Conclusion

This comprehensive study quantified the eight year-round impacts of prescribed burn on 24-hour
average PM, 5 and maximum daily 8-hour averaged ozone (MDAS8-O3) concentrations, as well as
associated excess premature mortality due to long-term prescribed burn PM, s and MDAS-O;
exposure in ten southeastern US states. Prescribed burn emissions were responsible for 15% of the
state-level annual average ambient PM,; s in Alabama, Florida, Georgia, Mississippi, and South
Carolina while their contribution to O3 was less than 1%. The study also mapped the spatial
distributions of prescribed burn-related PM,; 5 and Oj; levels across different seasons, revealing that
January—April is the most extensive burning season, significantly affecting air quality.
Additionally, it was found that moderate burning season in October—December also significantly
impacts air quality, a situation previously unreported. Depending on the concentration response
function used, annual premature deaths due to prescribed burn PM,; s ranged from 1,076 (IER
model) to 2,552 (GEMM-NCD-+LRI model) across the ten southeastern states. Furthermore,
prescribed burn MDAS8-O; is responsible for approximately 167 premature deaths annually.
Despite a decrease in smoke concentrations in 2020 compared to 2013, premature deaths increased
due to an aging population and higher baseline mortality. High premature death rates were
especially prominent in urban areas. Given the lack of long-term epidemiological studies
specifically on the association between prescribed burn PM,; 5 and premature deaths, this study
assumed equivalent responses between prescribed burn PM; s and all-source PM, 5 in its analysis
of premature deaths. If prescribed burn PM, 5 is more toxic than all-source PM, 5 as some studies
suggest, then associated premature deaths would be higher than estimates in this study. Therefore,
conducting more long-term epidemiological studies on the health effects of prescribed burn PM, 5



is crucial. Additionally, local policies and guidance are vital to minimize the health risks associated
with prescribed burn and protect the public from the adverse effects of exposure to prescribed burn
smoke.
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Appendices

Table A.1. Annual average prescribed burn smoke PM, 5 in southeastern US states.

Prescribed burn smoke PM, s [mean + SD (median)] (ug/m?)

States 2013- 2013 2014 2015 2016 2017 2018 2019 2020
2020
Alabama 0.90+0.15 | 0.86+0.13 | 0.80+0.16 | 1.05+0.21 | 0.89+0.13 | 1.09+0.25 | 0.88+0.19 | 0.89+0.14 | 0.82+0.14

(0.91) (0.87) (0.81) (1.07) (0.90) (1.04) (0.86) (0.88) (0.82)

0.65+0.19 | 0.75+0.19 | 0.71£0.12 | 0.70+0.27 | 0.65+0.18 | 0.68+0.28 | 0.64+0.20 | 0.54+0.21 | 0.52+0.23

Florida (0.64) (0.77) (0.69) (0.66) (0.65) (0.66) (0.62) (0.51) (0.47)
Georaia | 0-91£0.19 | 0.8020.18 | 0.91=0.18 | 1.00£0.25 | 0.94£0.16 | 12320.32 | 0.91+0.20 | 0.80:0.18 | 0.740.2
& (0.91) (0.79) (0.91) (0.99) (0.96) (1.27) (0.92) (0.83) (0.74)
Kentucky | 0-44£0.05 | 0.41£0.05 | 0.33+0.04 | 0.47+0.06 | 0.53£0.09 | 0.56=0.07 | 0.43£0.06 | 0.48£0.09 | 0.38+0.04
Yl (044 (0.41) (0.33) (0.48) (0.52) (0.56) (0.42) (0.48) (0.38)
] 0.65£0.1 | 0.66£0.08 | 0.58+0.09 | 0.74+0.13 | 0.61£0.12 | 0.73£0.14 | 0.58+0.12 | 0.66+0.12 | 0.63+0.12
Mississippi

(0.64) (0.66) (0.58) (0.73) (0.62) (0.74) (0.58) (0.67) (0.62)




North | 0.48+0.12 | 0.35£0.08 | 0.44+0.1 | 0.50+0.12 | 0.60+£0.17 | 0.67+0.19 | 0.46+0.14 | 0.49+0.15 | 0.38+0.09
Carolina (0.48) (0.35) (0.43) (0.50) (0.59) (0.68) (0.47) (0.50) (0.38)

South | 0.65+0.09 | 0.54+0.10 | 0.67+0.09 | 0.67+0.12 | 0.72+0.12 | 0.98+0.14 | 0.65+0.08 | 0.58+0.13 | 0.43+0.06
Carolina (0.65) (0.52) (0.65) (0.68) (0.72) (1.01) (0.65) (0.57) (0.44)

Tennessee | 035009 | 0.52£0.07 | 0.44£0.06 | 0.58£0.09 | 0.63£0.14 | 0.65£0.1 | 0.53=0.12 | 0.61+0.12 | 0.48+0.08
(0.54) (0.52) (0.43) (0.58) (0.63) (0.66) (0.53) (0.62) (0.48)

Vicginia | 0-37£0.07 | 0.26x0.04 | 0.29+0.07 | 0.38+0.08 | 0.510.10 | 0.470.09 | 0.38£0.08 | 0.4320.09 | 0.32+0.05
& (0.38) (0.26) (0.29) (0.38) (0.52) (0.47) (0.38) (0.44) (0.31)

West | 0.33£0.05 | 0.2740.04 | 0.26£0.05 | 0.31£0.05 | 0.43+0.07 | 0.40+0.07 | 0.33£0.05 | 0.39+0.07 | 0.25+0.04
Virginia (0.33) (0.27) (0.26) (0.31) (0.42) (0.39) (0.34) (0.39) (0.25)

Table A.2. Annual average prescribed burn smoke MDAS8-Oj; in southeastern US states.

Prescribed burn smoke MDAS8-O; [mean + SD (median)] (ppb)




States | 2013— 2013 2014 2015 2016 2017 2018 2019 2020
2020

Alabama | 0422009 | 0.5420.11 | 0.52+0.13 | 0.37+0.10 | 0.34£0.07 | 0.47£0.15 | 0.3620.1 | 0.380.09 | 0.31:0.08
(0.40) (0.51) (0.49) (0.36) (0.33) (0.43) (0.34) (0.37) (0.29)

Florida | 0-46£0.12 | 0.66=0.17 | 0.63+0.12 | 0.410.12 | 0.36£0.09 | 0.440.19 | 0.41=0.15 | 03320.12 | 0.3520.12
(0.44) (0.64) (0.63) (0.4) (0.34) (0.41) (0.4) (0.32) (0.34)

Georaia | 0-5120.13 | 0.610.17 | 0.69£0.16 | 0.45:0.12 | 0.44+0.10 | 0.64£0.19 | 0.44=0.13 | 0.42£0.1 | 0.3520.12
& (0.51) (0.59) (0.7) (0.45) (0.44) (0.65) (0.44) (0.41) (0.32)

Kentucky | 021£0-03 | 027£0.02 | 0.25+0.04 | 0.19£0.03 | 0.18+0.04 | 0.25£0.04 | 0.17£0.03 | 0.22£0.04 | 0.16:0.02
Y (021 (0.27) (0.25) (0.19) (0.18) (0.26) (0.17) (0.23) (0.16)

Mississingi | 0-30£0:04 | 0.41£0.05 | 0.4£0.07 | 0.270.06 | 0.23£0.05 | 031£0.07 | 0.2320.05 | 0.27+0.05 | 0.23=0.04
PP 0.31) (0.41) (0.4) (0.27) (0.24) (0.31) (0.23) (0.27) (0.23)

North | 0.26+0.05 | 0.25+0.06 | 0.36+0.08 | 0.24+0.06 | 0.25+0.06 | 0.37+0.09 | 0.18+0.04 | 0.25+0.07 | 0.16+0.04
Carolina (0.26) (0.25) (0.36) (0.23) (0.24) (0.37) (0.18) (0.25) (0.16)

South | 0.36£0.05 | 0.39+0.1 | 0.53+0.07 | 0.31£0.04 | 0.32+0.06 | 0.54+0.08 | 0.27+£0.05 | 0.29+0.05 | 0.19+0.03
Carolina (0.35) (0.37) (0.53) (0.3) (0.31) (0.54) (0.26) (0.29) (0.18)




Tenmesse | 0-26£0:04 | 033£0.04 | 0.31£0.07 | 0.2340.05 | 0.22£0.07 | 0.29£0.05 | 0.2£0.03 | 0.26+0.06 | 0.18£0.04
(0.26) (0.33) (0.31) (0.23) (0.22) (0.29) (0.2) (0.26) (0.18)

Vicginia | 0-19£0.04 | 0.20:0.04 | 0.25:0.06 | 0.18+0.04 | 0.21£0.05 | 0.240.06 | 0.15£0.03 | 0.22£0.05 | 0.13+0.02
& (0.19) (0.19) (0.23) (0.18) (0.20) (0.23) (0.14) (0.22) (0.13)

West | 0.17#0.02 | 0.21£0.03 | 0.25£0.04 | 0.16+0.02 | 0.17+0.03 | 0.19£0.03 | 0.13+0.02 | 0.20+0.04 | 0.12+0.02
Virginia (0.18) (0.21) (0.24) (0.16) (0.17) (0.19) (0.13) (0.20) (0.12)

Table A.3. Yearly non-accidental premature deaths attributed to prescribed burn PM, 5 exposure.




State GEMM NCD+LRI [mean (95%CI)]
2013 | 2014 2015 2016 2017 2018 2019 2020

Alabama 184 | 167 | 325(264-385) | 319 (259-379) | 405 (328-481) | 50 (41-59) 339 (275-402) | 364 (295-433)
(151- | (137-
217) | 197)

Florida 207 | 215 | 283(229-336) | 315(255-375) | 328 (265-390) | 344 (278-410) | 267 (217-318) | 295 (239-352)
(168- | (176-
244) | 254)

Georgia 383 | 430 | 619(503-732) | 636 (517-754) | 839 (681-995) | 440 (357-523) | 670 (544-794) | 665 (539-790)
(312- | (351-
451) | 507)

Kentucky 88 71 118 (97-140) | 143 (117-169) | 166 (135-197) | 732 (593-868) | 136 (111-161) | 126 (103-150)
(72- | (59-
104) | 84)

Mississippi | 68 61 111 (91-133) | 101 (82-120) | 130 (106-156) | 350 (284-416) | 112 (91-133) | 125 (101-149)
(55- | (50-

80)

72)




North 215 | 271 | 369 (300-437) | 488 (396-578) | 563 (457-667) | 265 (215-315) | 453 (368-537) | 428 (347-508)
Carolina (175- | (221-
254) | 321)
South 139 | 171 | 214 (174-254) | 247 (201-293) | 342 (278-406) | 243 (197-288) | 231 (188-275) | 213 (173-254)
Carolina (113- | (140-
165) | 203)
Tennessee 152 | 135 | 221 (180-261) | 263 (214-312) | 291 (237-346) | 129 (105-152) | 279 (227-331) | 260 (211-309)
(124- | (110-
180) | 159)
Virginia 116 | 123 | 190 (155-226) | 274 (223-325) | 273 (222-324) | 103 (84-123) | 251 (204-297) | 228 (185-271)
(94- | (101-
137) | 146)
West 31 29 41 (33-48) 56 (46-67) 58 (48-69) 235 (191-279) | 53 (43-63) 43 (36-52)
Virginia (25- | (24-
37) | 35)
Total 1583 | 1673 | 2491 (2022- 2842 (2305- 3397 (2754- 2890 (2342- 2792 (2264- 2747 (2223-
(128 | (136 | 2948) 3366) 4026) 3428) 3307) 3262)
9- 5-
1869 | 1972
) )




Table A.4. Yearly long-term all-cause premature deaths attributed to prescribed burn MDAS8-O; exposure.

States all-cause premature deaths [Mean (95% CI)]
2013 2014 2015 2016 2017 2018 2019 2020
Alabama 21 (14- | 19(13- | 15(10-21) | 15(10-20) |20 (13-27) 16 (11-22) | 18 (12-24) 14 (9-19)
28) 26)
Florida 29 (19- |34 (22- |21(14-29) 18 (12-25) 20 (13-28) 21 (14-29) 17 (12-24) 18 (12-25)
40) 46)
Georgia 43 (28- | 51 (34- |36(23-49) 39 (26-54) 56 (36-76) 38 (25-52) 41 (27-55) 31 (20-42)
58) 70)




Kentucky 10(7- | 9(7-13) | 8(5-11) 7 (5-10) 11 (7-15) 7(5-11) 10 (7-14) 7 (5-10)
14)

Mississippi | 7(5-10) | 7(5-10) | 5(3-7) 4 (3-6) 5 (4-8) 4 (3-6) 5(4-7) 4 (3-6)

North Carolina | 21 (14- |33 (22- |23(15-32) |26(17-36) |38(25-52) |20(13-27) |30 (20-40) 19 (13-27)
29) 45)

South Carolina | 14 (10- | 21 (14- | 13 (9-18) 13(9-19) |23 (15-32) 12 (8-17) 14 (10-20) | 9 (6-13)
20) 29)

Tennessee 16(11- | 16(11- |13 (9-18) 13 (9-17) 16 (11-22) 11 (8-16) 16 (11-22) 11 (8-16)
23) 22)

Virginia 12(8- | 15(10- | 12(8-17) 14 (10-20) | 17 (11-24) 10 (7-14) 15 (10-21) 11 (7-15)
17) 21)

West Virginia |3 (3-5) |4(3-6) |3 (2-4) 3 (2-4) 3(3-5) 2 (2-3) 3(3-5) 2 (2-3)

Total 177 209 146 (95-198) | 153 (99-207) | 209 (135-284) | 143 (92-194) | 169 (109-229) | 127 (82-172)
(115- | (135-
240) 283)
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Highlights:

e Prescribed burns are a major source of air pollution in the southeastern US.

e A total of 25.1 million acres of land were treated with prescribed burns in the ten
southeastern US states during 2013-2020.

e Approximately 15% of ambient PM, s in Alabama, Florida, Georgia, Mississippi, and South
Carolina originates from prescribed burns.

e Prescribed burns were responsible for an average 1.0% increase in ambient MDAS8-O3 in
Alabama, Florida, Georgia, and South Carolina.

e Prescribed burn PM, s and MDAS8-0; resulted in a total of 20,416 excess non-accidental
and 1,332 all-cause premature deaths in the ten southeastern states.
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Figure 1. Spatial distribution of total prescribed burned area observed by adjusted-FINN (top) and
corresponding total emissions of PM, s, VOCs and NOy (bottom) during 2013-2020
(unit is acres for burned area and tons for PM, 5, VOCs and NO,) emissions.
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Figure 2. Spatial distributions of yearly average prescribed burn specific PM, 5 concentrations
(ng/m?) during 2013-2020.
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Figure 3. Spatial distributions of yearly average prescribed burn specific MDAS-O;
concentrations (ppb) during 2013-2020.
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Figure 4. Boxplot of state-specific prescribed burn contributed daily average PM, s (top panel)

and daily MDAS8-O; (bottom panel) from 2013-2020. The top and bottom of the box
indicate the 75™ and 25 percentile of yearly values. The horizontal solid lines indicate
the interquartile range of yearly values. The blue horizontal blue line is the annual mean
and the top and bottom pink star indicate the 95" and 5™ percentile of yearly values. The
black horizontal long line indicates the average prescribed burn PM,; ;5 and MDAS8-O;
over the study states from 2013-2020.
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Figure 5. Spatial distributions of seasonal average prescribed burn specific PM, 5 (ug/m?) (top
row) and MDAS8-O; concentrations (ppb) (bottom row) during 2013-2020. January-
April is the extensive burning season, May—September is the low burning season and
October—December is the moderate burning season.
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Figure 6. Distributions of the total smoke-days due to prescribed fire PM; 5 (left) and MDAS-
O; (right) during 2013-2020. We defined a prescribed fire smoke-day as when
prescribed burn smoke contributed >10% of NAAQS, i.e., > 3.5 ug/m? to 24-hr
average PM, 5 mass concentration (NAAQS is 35 pg/m?) and > 7 ppb to MDAS8-O;
(NAAQS is 70 ppb).
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Figure 7. Distributions of premature mortality due to prescribed burn smoke PM; s exposure
(left) and MDAS8-O; exposure (right) at the gridded-level (12 km?). The estimates of
premature mortality are reported as the sum of annual values over 2013-2020. The



concentration-response relationship from GEMM-NCD+LRI was used for PM, 5 and
Sun et al. (2022) study for MDAS-Os.
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