
Journal Pre-proofs

Full length article

Prescribed burn related increases of population exposure to PM2.5 and O3 pol-
lution in the southeastern US over 2013–2020

Kamal J. Maji, Zongrun Li, Yongtao Hu, Ambarish Vaidyanathan, Jennifer D.
Stowell, Chad Milando, Gregory Wellenius, Patrick L. Kinney, Armistead G.
Russell, M. Talat Odman

PII: S0160-4120(24)00687-1
DOI: https://doi.org/10.1016/j.envint.2024.109101
Reference: EI 109101

To appear in: Environment International

Received Date: 14 July 2024
Revised Date: 23 September 2024
Accepted Date: 24 October 2024

Please cite this article as: K.J. Maji, Z. Li, Y. Hu, A. Vaidyanathan, J.D. Stowell, C. Milando, G. Wellenius, P.L.
Kinney, A.G. Russell, M. Talat Odman, Prescribed burn related increases of population exposure to PM2.5 and O3

pollution in the southeastern US over 2013–2020, Environment International (2024), doi: https://doi.org/10.1016/
j.envint.2024.109101

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.envint.2024.109101
https://doi.org/10.1016/j.envint.2024.109101
https://doi.org/10.1016/j.envint.2024.109101


Prescribed Burn Related Increases of Population Exposure to PM2.5 and O3 Pollution in the 
Southeastern US over 2013–2020

Kamal J. Maji1, Zongrun Li1, Yongtao Hu1, Ambarish Vaidyanathan1, Jennifer D. Stowell2, Chad 
Milando2, Gregory Wellenius2, Patrick L. Kinney2, Armistead G. Russell1, and M. Talat Odman1,*

1 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 
Georgia 30332, USA

2 School of Public Health, Boston University, Boston, Massachusetts 02118, USA

*Corresponding author: talat.odman@ce.gatech.edu (M. Talat Odman)

Abstract

Ambient air quality across the southeastern US has improved substantially in recent decades. 
However, emissions from prescribed burn remain high, which may pose a substantial health threat. 
We employed a multistage modeling framework to estimate year-round, long-term effects of 
prescribed burn on air quality and premature deaths. The framework integrates a chemical 
transport model with a data-fusion approach to estimate 24-h average PM2.5 and maximum daily 
8-h averaged O3 (MDA8-O3) concentrations attributable to prescribed burn for the period 2013–
2020. The Global Exposure Mortality Model and a log-linear exposure-response functions were 
used to estimate the premature deaths ascribed to long-term prescribed burn PM2.5 and MDA8-O3 
exposure in ten southeastern states. Our results indicate that prescribed burn contributed on annual 
average 0.59±0.20 µg/m3 of PM2.5 (~10% of ambient PM2.5) over the ten southeastern states during 
the study period. On average around 15% of the state-level ambient PM2.5 concentrations 
contributed by prescribed burn in Alabama (0.90±0.15 µg/m3), Florida (0.65±0.19 µg/m3), Georgia 
(0.91±0.19 µg/m3), Mississippi (0.65±0.10 µg/m3) and South Carolina (0.65±0.09 µg/m3). In the 
extensive burning season (January–April), daily average contributions to ambient PM2.5 increased 
up to 22% in those states. A large part of Alabama and Georgia experiences ≥3.5 µg/m3 prescribed 
burn PM2.5 over 30 days/year. Additionally, prescribed burn is responsible for an average increase 
of 0.32±0.12 ppb of MDA8-O3

 (0.8% of ambient MDA8-O3) over the ten southeastern states. The 



combined effect of prescribed burn PM2.5 exposure, population growth, and increase of baseline 
mortality over time resulted in a total of 20,416 (95% confidence interval (CI): 16,562–24,174) 
excess non-accidental premature deaths in the ten southeastern states, with 25% of these deaths in 
Georgia. Prescribed burn MDA8-O3 was responsible for an additional 1,332 (95% CI: 858–1,803) 
premature deaths in the ten southeastern states. These findings indicate significant impacts from 
prescribed burn, suggesting potential benefits of enhanced forest management strategies.

KEYWORDS: southeastern US; prescribed burn; chemical transport model; air pollution; 
premature deaths



1. Introduction

Wildfires have been growing in size and frequency in the United States (US), paralleling the 
extension of the burn weather season, which is characterized by high temperatures and low 
humidity (Cunningham et al., 2024; Cromar et al., 2024; Xu et al., 2023). This trend, driven by 
climate change, has led to more severe burn weather conditions. Wildland burns—including both 
wildfires and prescribed burn account for 44% of the nation’s primary emissions of fine particulate 
matter (PM2.5) in 2017, in which 32% are due to prescribed fire (USEPA, 2023a). However, in the 
Southeastern US, wildland burns contribute 31% of the primary PM2.5, in which 81% are coming 
from prescribed fire (Cromar et al., 2024; D’Evelyn et al., 2022). The Environmental Protection 
Agency (EPA) recognizes the increasing challenges and human health impacts of wildland burns, 
and smoke pose in communities all around the country (USEPA, 2023a). Despite stringent controls 
and intensive monitoring of the country’s vast forested areas (Burke et al., 2021), the annual 
acreage of forest land consumed by wildland burn in the US has doubled in past two decades 
(Burke et al., 2023). Controlled prescribed burn are effective in preventing destructive wildfires 
and typically emit less PM2.5 compared to wildfires of an equivalent burn area. Prescribed burn 
also supports ecosystem development, restoration, and management of wildland vegetation 
(Glassman et al., 2023).

Prescribed burns are low-intensity fires carried out under controlled environmental conditions to 
minimize the risk of uncontrolled spread and to enhance smoke dispersion before plumes affect 
downwind communities (Baijnath-Rodino et al., 2022; O’Dell et al., 2019). However, prescribed 
burns are conducted on a regular basis compared to wildfire events. Prescribed burns accounts for 
a significant portion of burn activity in the US, averaging 11 million acres per year. Of this, 70% 
occurs in the southeastern US (Kolden, 2019), where the primary fuels found in forests such as 
longleaf, slash, and loblolly pine forests with palmetto-gallberry understories in Florida, Georgia, 
and South Carolina, pine and mixed hardwood forests in the upper coastal plain of South Carolina, 
and shortleaf pine-grass assemblages in Arkansas (Prichard et al., 2017; Reid et al., 2012; Wright, 
2013). The annual rate of increase of burn area approximately 0.15 million acres in the 
southeastern US (Burke et al., 2023; Kondo et al., 2022). In the southeastern US, prescribed burn 
contributes about 10–15% to the annual average ambient PM2.5 levels, which can rise to 20–30% 
during the extensive burning season (January–April) (Afrin and Garcia‐Menendez, 2020; Carter 
et al., 2023).

The contribution of prescribed burn to regional ambient air pollution may offset the air quality 
improvements achieved in the US over the past few decades. Consequently, emissions from 
prescribed burns are classified as exceptional event pollutants and are not included in ambient air 
quality standards (USEPA, 2019). Previous studies estimating the contribution of prescribed burns 
to ambient air pollution have primarily focused on PM2.5 impacts, often overlooking their 
contribution to ozone (O3) pollution. Furthermore, these estimates are confined to the extensive 
prescribed burning season and not provided a complete year-long picture. Additionally, long-term 
exposure to air pollution poses a greater human health risk; however, only a few long-term health 
impact assessment studies have been conducted to quantify the premature deaths attributed to 
prescribed burn pollution. This gap is primarily due to the challenges in estimating long-term 
prescribed burn smoke exposure with high spatial and temporal resolutions (Zhang et al., 2023). 
The absence of a comprehensive assessment of the impacts of prescribed burn on both regional 



and local air pollution levels hinders the development of evidence-based policies. Such policies 
are necessary for using prescribed burn as an effective tool in land management. 

To address the evidence gap regarding the impacts of prescribed burn on air quality, we leveraged 
recent advancements in chemical transport modeling, the availability of remote sensing data, and 
statistical methods. Our aim was to estimate the effects of prescribed burn on regional and local 
PM2.5 and O3 levels across the southeastern US. Additionally, for contextual understanding, we 
employed a standard health impact assessment approach to estimate the excess deaths attributable 
to the increased levels of PM2.5 and O3 resulting from prescribed burn.

2. Materials and Methods

We designed a multistage modeling framework to estimate year-around prescribed burn impacts 
on air quality and health in ten southeastern US states (i.e., Alabama, Florida, Georgia, Kentucky, 
Mississippi, North Carolina, South Carolina, Tennessee, Virginia and West Virginia) from 2013 
to 2020. This framework consists of: (a) identification of daily prescribed burn information from 
the satellite-derived product Burn INventory from NCAR (FINN); (b) simulation of prescribed 
burn contributions to 24-h average PM2.5 and daily maximum 8-h average O3 (MDA8-O3) using 
the Community Multiscale Air Quality (CMAQ) model; (c) data-fusion to integrating CMAQ 
simulated PM2.5 and MDA8-O3 with daily observations to reduce model uncertainly; and (d) health 
impact assessment to estimate excess premature deaths associated with the change in PM2.5 and 
MDA8-O3 exposure due to prescribed burn (Figure S1).

2.1. Prescribed burn identification and emissions. 

The permit records often provide more precise measurements of burned areas compared to satellite 
data, however a complete record of prescribed burn in southeastern states is not available. 
Additionally, the information contained in burn permit records, such as location, date and time, 
may sometimes be incorrect, leading to potential misidentification of burn locations and sizes 
(Afrin and Garcia‐Menendez, 2020; Jaffe et al., 2020). We bridged this data gap by using FINN 
burn area data (version 2.5), a high-resolution satellite-based remote sensing product. FINN 
utilizes MODIS and VIIRS active burn data derived from thermal anomalies and combines them 
with land cover data to estimate daily burn area and emissions (Li et al., 2020). However, FINN 
does not distinguish between prescribed burn, wildfires, or agricultural burns. In our study, we 
utilized the prescribed burn data provided by Li et al. (2023). In that study, they implemented a 
burn-type differentiation algorithm to distinguish the types of fire in FINN. The algorithm utilizes 
the NLCD land use data to identify fires on agricultural lands as agricultural burns and employs a 
spatiotemporal clustering algorithm to estimate the durations of remaining fires. Then, it assumes 
that fires that last one day are prescribed burns and those that last longer are wildfires. Since permit 
records provide more precise measurements of burned areas, we employed a linear regression 
model to calibrate the FINN-based burned area data. This calibration was done using available 
permit records in Florida, Georgia and South Carolina, hoping to enhance the accuracy of burned 
area information over the entire domain. However, note that these permit burn area records can 
also contain inaccuracies, such as underreported/overreported (Huang et al., 2018) and that the 
three states mentioned above may not represent the rest of the Southeastern US. In addition to 
burned areas, FINN also provides fire emissions; however, instead of using those estimates we 



chose to recalculate the emissions using the adjusted burned areas described above in the BlueSky 
smoke modeling framework (Michael et al., 2023). There were several reasons for this decision. 
First, while FINN uses a more generalized classification for the fuels because of its global nature, 
BlueSky utilizes a more detailed classification that is customized for the fuels in the US. Second, 
BlueSky considers the meteorological conditions and fuel moistures to calculate the amounts of 
fuels consumed while FINN infers consumptions from fire radiative power (Ottmar et al., 2007). 
Third, the emission factors in BlueSky were recently updated with the most up to date information 
(Prichard et al., 2020a). Note that despite all these differences in methodology, we found a high 
correlation and strong agreement between the daily total emissions calculated using BlueSky and 
those from FINN (Li et al., 2023). Finally, FINN emissions are daily and two-dimensional, but air 
quality models require hourly and three-dimensional emission inputs. Bluesky is equipped with 
empirical time profiles that differentiate between wildfires and prescribed burns and plume-rise 
schemes that have been tested with data from prescribed fire experiments (Liu, 2014).

2.2. Air quality model configurations. 

Our air quality modeling system consisted of the Weather Research and Forecasting Model (WRF; 
version 3.9), a numerical weather prediction model, and CMAQ (version 5.3), a chemical transport 
model (CTM). CMAQ combines emission and weather inputs and models atmospheric transport, 
dispersion, chemical transformation, and deposition processes to simulate hourly pollution levels 
(Appel et al., 2021). The meteorological inputs to CMAQ were developed using the Weather 
Research and Forecasting (WRF) model version 3.9.1.1 (Skamarock et al., 2008) with NAM 
analysis and ADP observational datasets (Hu et al., 2022). The WRF model was configured with 
the RRTMG scheme for radiation, the Kain-Fritsch scheme for cumulus parameterization, the 
Morrison (2 moments) scheme for microphysics, the ACM2 Planetary Boundary Layer (PBL) 
scheme and the Pleim-Xiu Land Surface Model (LSM). We used the Carbon Bond 6 (CB6) gas 
phase chemistry mechanism and the AERO6 aerosol module in CMAQ. Our modeling domain, 
shown in Figure S2, had a horizontal resolution of 12 km×12 km, covering the southeastern US 
(29.41 to 41.78°N and -90.36 to -70.91°W) with 123x138 grid cells. We used the National 
Emission Inventory (NEI) for all anthropogenic emissions other than prescribed burn emissions. 
As for natural emissions, we used the Biogenic Emission Inventory System, version 4 (BEIS4) for 
biogenic emissions and the built-in windblown dust and sea spray aerosol emissions in CMAQ. 
To quantify the prescribed burn impacts, we generated two sets of concentration fields from two 
CMAQ simulations between January 2013 and December 2020: a baseline simulation with all 
emissions (𝐶𝑠

𝑎𝑙𝑙) and a second simulation excluding prescribed burn emissions (𝐶𝑠
𝑛𝑜―𝑃𝐵). We then 

calculated the prescribed burn contributed pollution as: 

∆𝐶𝑠
𝑃𝐵(𝑥,𝑡) = 𝐶𝑠

𝑎𝑙𝑙(𝑥,𝑡) ― 𝐶𝑠
𝑛𝑜―𝑃𝐵(𝑥,𝑡) (1)

where superscript s indicates simulated concentration and x and t denote space and time variability. 

2.3. Data fusion method:

Modeled concentrations have uncertainties related to emissions inputs, meteorological parameters, 
and physical/chemical transport processes; therefore, they differ from in-situ measurements 
(Friberg et al., 2016; Senthilkumar et al., 2019). To reduce the model biases and error, we followed 



Friberg et al. (2016) and fused observational data from fixed air quality monitors with daily 
average PM2.5 and MDA8-O3 fields simulated by CMAQ. Across eight years of observations at 
252 PM2.5 and 258 O3 monitors in the study area, with 437 thousand PM2.5 and 513 thousand 
MDA8-O3 daily observations were obtained from EPA-AQS (Environmental Protection Agency-
Air Quality System). The data-fused concentration fields (𝐶𝑝

𝑎𝑙𝑙) are produced for pollutant p by a 
regression model as described in Maji et al. (2024).

Finally, observation-adjusted no-prescribed burn concentration (𝐴𝑑𝑗𝐶𝑝
𝑛𝑜―𝑃𝐵) and observation-

adjusted prescribed burn impact (∆𝐴𝑑𝑗𝐶𝑝
𝑃𝐵) fields were generated as follows:

𝐴𝑑𝑗𝐶𝑝
𝑛𝑜―𝑃𝐵(𝑥,𝑡) = 𝐶𝑠

𝑛𝑜―𝑃𝐵(𝑥,𝑡) × [𝐶𝑝
𝑎𝑙𝑙(𝑥,𝑡)/𝐶𝑠

𝑎𝑙𝑙(𝑥,𝑡)]                                                               (3)

𝐴𝑑𝑗∆𝐶𝑝
𝑃𝐵(𝑥,𝑡) = ∆𝐶𝑠

𝑃𝐵(𝑥,𝑡) × [𝐶𝑝
𝑎𝑙𝑙(𝑥,𝑡)/𝐶𝑠

𝑎𝑙𝑙(𝑥,𝑡)]                                                                   (4)

2.4. Premature deaths assessment:

The calculation of excess deaths attributable to long-term exposure to pollutant p from prescribed 
burn smoke within grid cell (x) at time (t) follows a well-established method to estimate air 
pollution related mortality (Anenberg et al., 2010; Neumann et al., 2021):

∆𝑀𝑝
𝑃𝐵(𝑥,𝑡) = ∑𝑑,𝑎[𝐴𝐹𝑑,𝑎, 𝐶𝑝

𝑎𝑙𝑙(𝑥,𝑡) ― 𝐴𝐹𝑑,𝑎,𝐴𝑑𝑗𝐶𝑝
𝑛𝑜―𝑃𝐵(𝑥,𝑡)] × 𝐵𝑑,𝑎(𝑥,𝑡) × 𝑃𝑜𝑝𝑎(𝑥,𝑡)    (5)

where 𝑑 represents a specific disease (e.g., stroke, lung cancer etc.) while 𝑎 denotes specific age 
group, 𝐴𝐹 is the attributable fraction at annual average concentration level, and 𝐵𝑑,𝑎(𝑥,𝑡) × 𝑃𝑜𝑝𝑎
(𝑥,𝑡) is the of total disease-specific ‘Reported Mortality’. Since mortality is typically recorded at 
the state or county-level, however as county-level baseline value for all disease are not available, 
a common approach to estimate baseline mortality at the grid cell level is to scale the reported 
mortality to the grid cell population (𝑃𝑜𝑝𝑎) data by using the baseline mortality rate (𝐵𝑑,𝑎 = 
𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑑,𝑎/𝑃𝑜𝑝𝑎) at state levels. State-level mortality is obtained by the sum of 
∆𝑀𝑝

𝑃𝐵( 𝑥,𝑡) for each grid cell in a state within the study domain. AF can be estimated for each age 
group 𝑎 and disease 𝑑 as:

𝐴𝐹𝑑,𝑎,𝐶𝑝 = (1 𝑅𝑅𝑑,𝑎(𝐶𝑝)) 𝑅𝑅𝑑,𝑎(𝐶𝑝)                                                                                 (6)

with 𝑅𝑅𝑑,𝑎(𝐶𝑝) being the relative risk (or hazard ratio) for pollutant p at the annual average 
concentration level 𝐶𝑝.

We recognize that the mortality risk associated with chronic exposure to prescribed burn PM2.5 
may differ from that linked to all-source PM2.5. However, since there is a lack of specific studies 
addressing the increased mortality risk from chronic exposure to prescribed burn PM2.5 we opted 
to use the Global Exposure Mortality Model (GEMM) as a practical approach to estimate 
premature deaths attributable to chronic exposure (Burnett et al., 2018). Our method involved two 
GEMM modules: the GEMM-NCD+LRI module to estimate non-accidental deaths 
[predominantly due to noncommunicable diseases (NCDs) and lower respiratory infections 
(LRIs)], and the GEMM-5COD model to calculate five types of disease-specific deaths [(ischemic 



heart disease (IHD), stroke (CEV), chronic obstructive pulmonary disease (COPD), lung cancer 
(LC), and lower respiratory tract infections (LRI)]. For comparison, we also estimated these five 
disease-specific deaths using the Integrated Exposure Response (IER) model (Burnett et al., 2014). 
Additionally, to estimate all-cause mortality attributed to prescribed burn MDA8-O3 exposure, we 
employed a log-linear concentration response function (CRF) (Maji et al., 2023; Pozzer et al., 
2023; Sun et al., 2022). The disease-specific and state-specific baseline mortality for age group ≥ 
25 years were obtained from the Global Burden of Disease (GBD) results tool (IHME, 2019). The 
spatial distribution of the population with 1 km2 resolution is taken from the Gridded Population 
of the World (GPW) dataset (WorldPop, 2023) and mapped on our 12-km CAMQ resolution grid. 

3. Results and Discussion

The prescribed burn area exhibited high variation across different states. Prescribed burn 
constituted an estimated 79% of the total number of burns in Alabama, 76% in South Carolina, 
and 66% in Georgia. Between 2013 to 2020, 25.1 million acres (~3 million acres/year) of land 
were treated as prescribed burn in the study domain (Figure 1 and Figure S3), in which about 55% 
area burn during the extensive burning season (4 months), while 21 and 24% area burn during low 
burn season (5 months) and moderate burn season (3 months), respectively. Of the total prescribed 
burn area, 83.7% on private lands with the rest on federal lands (Figure S4 to S6). The seasonal 
patterns of prescribed burns on federal and private lands show similar trends, with the most intense 
burning activity occurring between January and May. Prescribed burning contributed to emissions 
of about 3.28 million tons of PM2.5, 3.50 million tons of volatile organic compounds (VOCs), and 
0.37 million tons of nitrogen oxides (NOx), during the study period. The years 2014 and 2017 saw 
larger total burn area, 3.55 and 3.74 million acres respectively, and emissions accounting for about 
30% of total prescribed burn emissions during these two years (Figures S7-S9 and Table S2). The 
year-to-year differences are due to meteorological conditions (some years have more favorable 
weather for burning), policy and management practices (e.g., there were more burns in 2017 in the 
wake of wildfires in the Southern Appalachian Mountains) and programmatic support and funding 
(fire management funding can fluctuate from year to year) (Melvin, 2018; Boby et al., 2023).

Figure 1. Spatial distribution of total prescribed burned area from adjusted-FINN (top) and 
corresponding total emissions of PM2.5, VOCs and NOx (bottom) during 2013–2020 
(unit is acres for burned area and tons for PM2.5, VOCs and NOx) emissions.

3.1. Assessing Model Performance

Model evaluation indicated that CMAQ generally underestimated PM2.5 (by ∼21%) and 
overestimated MDA8-O3 (by ~23%) with respect to EPA measurement over the study period in 
ten southeastern states. Data-fusion reduced PM2.5 underestimation to 0.6% and MDA8-O3 
overestimation to 0.3%. R2 over the study domain was 0.65 (root mean squared error (RMSE) = 
3.04 μg/m3; normalized mean error (NME) = 24%, normalized mean bias (NMB) = -10%) for 
PM2.5, and 0.86 (RMSE = 4.29 ppb; NME = 8%, NMB = -1.5%) for MDA8-O3, (Figure S10 and 



Table S3), above typical values for fields developed using only CTMs (Emery et al., 2017) and 
satellite-based PM2.5 data (van Donkelaar et al., 2010).

The data-fusion method performance was also evaluated using a comprehensive 10-fold cross-
validation analysis. The results (Table S3) indicated data-fusion performed better compared to 
CMAQ simulation, with larger R2 and smaller MB, RMSE and NMB when compared to EPA 
monitor data. All performance metrics for PM2.5 (R2=0.64, MB= -0.39 μg/m3, RMSE = 3.53 μg/m3, 
NMB = -4.69%), and MDA8-O3 (R2=0.82, MB= -1.73 ppb, RMSE = 4.18 ppb, NMB = -4.36%) 
met the criteria and goals for CTMs (Emery et al., 2017). While data-fusion showed improved 
statistical performance, potential biases may exist due to the inherent limitations of both data-
fusion and EPA data’s ground truthing.

3.2. Impacts on Air Quality

The study measured the contribution of prescribed burn to annual and seasonal PM2.5 and MDA8-
O3 levels by aggregating daily data across the ten southeastern states and individual states. The 
simulated annual mean prescribed burn PM2.5 and MDA8-O3 show significant temporal and spatial 
variation, in alignment with the burned areas (Figure 2 and Figure 3). The locations with the 
highest annual average PM2.5 levels (≥ 1.4 μg/m3) from prescribed burns are associated with areas 
of extensive prescribed burning, with impacts often extending across large regions. These hotspot 
locations vary annually based on the extent of the burned area, as prescribed burns are typically 
repeated every two to three years. However, they are primarily concentrated along the Alabama-
Georgia border. Certain grids experienced daily PM2.5 levels of around 46 μg/m3 and MDA8-O3 
levels of 55 ppb from prescribed burn (Figure S11).

Figure 2. Spatial distributions of yearly average prescribed burn specific PM2.5 concentrations 
(µg/m3) during 2013–2020.

Figure 3. Spatial distributions of yearly average prescribed burn specific MDA8-O3 
concentrations (ppb) during 2013–2020.

On average, prescribed burn contributed 0.59±0.20 µg/m3 of PM2.5 across the ten southeastern 
states during 2013–2020, accounting for ~10% of the ambient PM2.5. At the state-level, 
contribution of average prescribed burn PM2.5 was considerably higher in Alabama [0.90±0.15 
(0.91) µg/m3], Florida [0.65±0.19 (0.64) µg/m3], Georgia [0.91±0.19 (0.91) µg/m3], Mississippi 
[0.65±0.1 (0.64) µg/m3], and South Carolina [0.65±0.09 (0.65) µg/m3] [mean±SD (median)], 
compared to domain average (Figure 4). These levels accounted for approximately 15% of ambient 
PM2.5 in each respective state. In other states, the contribution of prescribed burn to ambient PM2.5 
was less than 6%. Notably, Alabama and Georgia recorded the highest annual average level of 
PM2.5 contribution from prescribed burn, exceeding 1.0 μg/m3 in 2015 and 2017 (Table A.1). The 
highest annual average prescribed burn PM2.5 were recorded in Chattahoochee and Marion 



Counties (central Georgia), and Russell County (southeastern Alabama), reaching an average of 
1.20 µg/m3 during 2013–2020 (Figure S12). 

Figure 4. Boxplot of state-specific prescribed burn contributed daily average PM2.5 (top) and daily 
MDA8-O3 (bottom) from 2013–2020. The top and bottom of the box indicate the 75th 
and 25th percentile of yearly values. The vertical solid lines indicate the interquartile 
range of yearly values. The horizontal blue line is the annual mean, and the top and 
bottom pink stars indicate the 95th and 5th percentile of yearly values. The long black 
horizontal line indicates the average prescribed burn PM2.5 and MDA8-O3 over the ten 
southeastern states from 2013–2020. 

During the extensive burning season from 2013 to 2020, the average contribution of prescribed 
burn PM2.5 was higher in Alabama [1.15±0.26 (1.13) μg/m3], Georgia [1.41±0.36 (1.40) μg/m3], 
and South Carolina [1.05±0.15 (1.03) μg/m3] (Figure 5 and Table S4). In these states, prescribed 
burn contributed over 75% to total daily PM2.5 on the days with highest burn area, compared to an 
average of 22% during the extensive burning season. For example, on March 23, 2016, when the 
highest burned area was reported as 63,710 acres, prescribed burn contributed around 9.0 µg/m³ 
of PM2.5 in Georgia, North Carolina, South Carolina, and Virginia, comprising approximately 75% 
of the ambient PM2.5 (Figure S14). In 2017 extensive burning season, the average prescribed burn 
PM2.5 was 2.05±0.57 (2.11) μg/m3 in Georgia, highest among all states. During the moderate 
burning season (October-December), we observed that the contribution of prescribed burn to PM2.5 
was higher than the annual average in all states, with particularly significant contributions in 
Alabama [1.19±0.18 (1.21) µg/m3], Georgia [1.00±0.23 (1.02) µg/m3], and Mississippi [0.93±0.15 
(0.93) µg/m3]. These levels accounted for approximately 20% of the ambient PM2.5 in each 
respective state during this period (Figure 5). Notably, in Mississippi and Tennessee, the 
prescribed burn PM2.5 levels during October-December consistently surpassed the levels during 
the January-April. This trend may be attributed to those states’ practice of conducting a majority 
of their prescribed burn in the October-December season (Table S6). 

From 2013 to 2020, prescribed burn contributed to an average increase of 0.33±0.12 ppb in MDA8-
O3 levels across the ten southeastern states, representing ~0.8% of the ambient MDA8-O3. At state-
level, prescribed burn was responsible for an average increase in MDA8-O3 by 0.42±0.09 (0.40) 
ppb in Alabama, 0.46±0.12 (0.44) ppb in Florida, 0.51±0.13 (0.51) ppb in Georgia, and 0.36±0.05 
(0.35) ppb in South Carolina, accounting for about 1.0% of ambient MDA8-O3 (Table 2). The 
highest prescribed burn contributions to MDA8-O3 were observed in Thomas and Grady Counties 
(in southwestern Georgia) and Gadsden County (in northwestern Florida), reaching average 1.00 
ppb during the study period. The counties with elevated MDA8-O3 levels are approximately 180 
km away from the counties with high-levels of prescribed burn PM2.5. This is because PM2.5 peaks 
primarily due to burn emissions, while O3 is formed during transport, with peak concentrations 
occurring farther away, influenced by meteorological conditions. 



During the extensive burning season, the contribution of prescribed burn to MDA8-O3 is higher 
(0.56±0.23 ppb), accounting for ~2.2% of ambient MDA8-O3 (Table S7). Similar to the highest 
contribution of daily average prescribed burn PM2.5, high MDA8-O3 levels were also recorded on 
days with the largest areas burned. For instance, on March 23, 2016, prescribed burn was 
responsible for an increase of around 3.5 ppb MDA8-O3 in Georgia, North Carolina, South 
Carolina, and Virginia, which was about 8% of the ambient MDA8-O3 (Figure S13 and S14). 
During the moderate burning season, we noted that prescribed burn MDA8-O3 levels were 
comparatively lower than those observed during the extensive burning season. However, the 
average contributions in Alabama [0.49±0.10 (0.47) ppb], Florida [0.40±0.10 (0.40) ppb], and 
Georgia [0.49±0.12 (0.49) ppb] were still noteworthy. These contributions accounting for 
approximately 1% of the ambient MDA8-O3 in these states are notable especially since the winter 
period is generally less favorable for O3 formation (Table S9). During the summer (May-
September), ozone-season restrictions on certain open burning activities lead to a reduction in 
prescribed burn contributions to PM2.5 and MDA8-O3, although some understory prescribed burn 
still contribute very low-levels (Table S5 and Table S8).

In 2020, in Alabama Georgia, Kentucky and Mississippi, prescribed burn PM2.5 and MDA8-O3 
levels were higher during the moderate burning season compared to the extensive burning season. 
This shift might be linked to COVID-19 lockdown restriction or higher-than-usual rainfall during 
the extensive burn season (NOAA, 2020). As a result, most prescribed burning plan was 
rescheduled from January-April to October-December, leading to a 10% higher prescribed burn 
area in moderate burn season. 

Figure 5. Spatial distributions of seasonal average prescribed burn specific PM2.5 (µg/m3) (top) 
and MDA8-O3 concentrations (ppb) (bottom) during 2013–2020. January–April is the 
extensive burning season, May–September is the low burning season and October–
December is the moderate burning season. 

3.3. Impact of Prescribed Burn on Air Quality Relative to NAAQS

We assessed the impact of prescribed burn relative to the national ambient air quality standards 
(NAAQS). We defined a prescribed burn ‘smoke-day’ as when prescribed burn contributed ≥10% 
of NAAQS, i.e., ≥ 3.5 µg/m3 to ambient daily average PM2.5 concentration (NAAQS: 35 µg/m3) 
and ≥ 7 ppb to ambient MDA8-O3 (NAAQS: 70 ppb). Out of 252 AQS monitoring sites, 22 (~9%) 
experienced over 15 smoke-days/year and 46 sites (~18%) experienced over 10 smoke-days/year 
due to prescribed burn PM2.5. In 2017, the year with the highest burn area, 33 sites primarily located 
in Georgia, Alabama and South Carolina (Figure S15) experienced at least 20 smoke-days, 
indicating a hotspot location for the impact of prescribed burn PM2.5 in the southeastern US. 
Among these 33 sites, the distance to the nearest burn location ranged from 914 meters to 11,931 
meters. The impact of prescribed burn on air quality was highest during the extensive burning 
season, with 15 sites in Georgia significantly affected (≥15 smoke-days/year) by prescribed burn. 



Over the eight years of the study, only 11 sites, located in southwestern Georgia and northwestern 
Florida, experienced more than 20 smoke-days due to prescribed burn MDA8-O3. 

During the study period, we observed significant contributions of prescribed burn to the PM2.5 
levels in several states: 89 smoke-days in Alabama, 158 in Georgia, 112 in Tennessee, 91 in North 
Carolina, and 72 in South Carolina. In terms of MDA8-O3 levels, there were 67 smoke-days in 
Alabama, 67 in Georgia, 86 in North Carolina, and 83 in South Carolina. At grid-level, we 
observed large parts of Alabama and Georgia experiencing over 240 smoke-days (on average 30 
days/year) due to prescribed burn PM2.5 and a significant portion of Georgia and Florida 
experiencing over 40 smoke-days (on average 5 days/year) due to prescribed burn MDA8-O3 
(Figure 6 and S16). 

Figure 6. Distributions of the total smoke-days due to prescribed burn PM2.5 (left) and MDA8-
O3 (right) during 2013–2020. We defined a prescribed burn smoke-day as when 
prescribed burn smoke contributed ≥10% of NAAQS, i.e., ≥ 3.5 µg/m3 to 24-hr 
average PM2.5 mass concentration (NAAQS is 35 µg/m3) and ≥ 7 ppb to MDA8-O3 
(NAAQS is 70 ppb).

3.4. Impact on Excess Premature Deaths

Our analysis indicates that premature deaths due to prescribed burn-related smoke exposure are 
influenced by various factors, including the area burned, population dynamics and state-level 
baseline mortality over time. In the ten southeastern states under study, with a population of 62 
million, the average population-weighted exposures to prescribed burn PM2.5 and MDA8-O3 were 
0.61 µg/m3 and 0.31 ppb, respectively. The average population-weighted exposures were notably 
higher in Alabama (0.88 µg/m3 and 0.38 ppb) and Georgia (0.88 µg/m3 and 0.46 ppb). The highest 
population-weighted exposure to prescribed burn PM2.5 occurred in 2017 across the ten 
southeastern states, with an average of 0.75 µg/m3. Alabama and Georgia experienced even higher 
levels in 2017, at 1.04 µg/m3 and 1.15 µg/m3, respectively. Conversely, the highest population-
weighted exposure to prescribed burn MDA8-O3 was found in 2014, averaging 0.41 ppb across 
the ten southeastern states, with peak levels of 0.62 ppb in Florida and 0.60 ppb in Georgia. It is 
important to note that these population-weighted values are lower than the annual average 
prescribed burn contributed pollution concentrations, largely because the burn areas are typically 
situated away from densely populated regions.

Across the ten states from 2013–2020, the total excess non-accidental premature deaths attributed 
to prescribed burn PM2.5, as estimated using the GEMM-NCD+LRI model, was 20,416 (95% 
confidence interval (CI): 16,562–24,174). This accounted for 10.4% of the total non-accidental 
premature mortality attributable to ambient PM2.5. For comparison, using the GEMM-5COD 
model, the total five-cause specific premature death was 13,642 (95% CI: 9,343–17,709), and 
using the IER model, it was 8,611 (95% CI: 3,669–11,318) for the same period. Previously 
unaccounted non-communicable diseases (other-NCD) (GEMM-NCD+LRI minus GEMM-
5COD) connected to 6,774 (33%) premature deaths from prescribed burn PM2.5. Ischemic heart 



disease (IHD) was the biggest cause of premature death, accounting for 42% in the GEMM-5COD 
model and 39% in the IER model (Table S2). The year 2017 witnessed the highest number of 
prescribed burns PM2.5-attributed non-accidental premature deaths [3,397 (95% CI: 2,753–4,025)], 
a consequence of the highest burn area and associated increased exposure to prescribed burn PM2.5 
(Table 3). In terms of regional impact during 2013–2020, Georgia accounted for 24% of the total 
excess non-accidental premature deaths [4,974 (95% CI: 4,036–5,887)], followed by North 
Carolina with 16% [3,229 (95% CI: 2,620–3,822)], and Alabama with 12% [2,454 (95% CI: 
1,991–2,906)]. 

During 2013–2020, prescribed burn MDA8-O3 attributed long-term exposure was responsible for 
an estimated 1,332 (95% CI: 858–1,803) excess all-cause premature deaths across the ten states. 
This accounted for 2.6% of the total ambient MDA8-O3 attributed all-cause premature mortality. 
Of these excess all-cause deaths, Georgia and North Carolina accounted for significant portions, 
with 334 (95% CI: 216–453) and 210 (95% CI: 136–285) deaths, respectively. The highest number 
of all-cause deaths attributable to prescribed burn MDA8-O3 exposure was estimated in 2014 and 
2017, with 209 premature deaths. Notably, the instances of high premature deaths were 
predominantly in regions of higher population density, in contrast to the areas with elevated 
concentrations of prescribed burn smoke (Figure 7).

Figure 7. Distributions of premature mortality due to prescribed burn smoke PM2.5 exposure 
(left) and MDA8-O3 exposure (right) at the gridded-level (12 km2). The estimates of 
premature mortality are reported as the sum of annual values over 2013–2020. The 
concentration-response relationship from GEMM-NCD+LRI was used for PM2.5 and 
Sun et al. (2022) study for MDA8-O3.

3.5. Limitations, Knowledge Gap and Future Study

This study utilized a unique clustering algorithm to identify prescribed burn information from the 
satellite-based fire product, applied a CTM followed by data-fusion to assess the contribution of 
prescribed burn to air quality, and performed a 10-fold cross-validation for model performance 
evaluation. It also explored potential premature death impacts of prescribed burn-related pollutions 
exposure in the southeastern US using well-established methods, as well as a sensitivity analysis 
assessing PM2.5-associated mortality using various CRF models. However, the study faced three 
major uncertainties and limitations: (1) reliance on satellites to identify prescribed burn; (2) 
potential overestimation or underestimation of emissions by the BlueSky model, and (3) the 
assumption of equal risks for prescribed burn-specific PM2.5 and PM2.5 from all other sources.

We utilized the FINN data for daily burn area and burn location information, which is based 
on thermal anomalies detected by MODIS and VIIRS satellites (Wiedinmyer et al., 2023). A 
significant drawback of this thermal anomaly detection method is its potential to miss smaller or 
understory burns. Additionally, prescribed burns, which are typically of low intensity, pose further 
challenges for satellite detection. Factors such as cloud cover and the timing mismatch between 
peak burn periods and satellite overpasses further reduce the probability of detection (Nowell et 



al., 2018). Consequently, relying solely on thermal anomaly detection may not fully capture all 
fire events, particularly prescribed burn (Larkin et al., 2020). Moreover, the clustering algorithm 
employed in this study occasionally misclassifies wildfires as prescribed burn, particularly when 
their duration is shorter than one day (Li et al., 2023).

The relationship between prescribed burn emissions and corresponding atmospheric pollutants is 
nonlinear. Therefore, any difference in emissions can lead to significant changes in exposure and 
associated premature deaths (Clappier et al., 2017). For instance, Koplitz et al. (2018) observed 
that the Global Burn Emissions Database Version 4.1 (GFEDv4) estimates of burned area for June 
2011 were 40% higher than those from FINN over CONUS; however, total organic carbon (OC) 
emitted by wildfires was two times higher in FINN (0.32 Tg) compared to GFEDv4 (0.15 Tg OC). 
Also, FINN and GFEDv4 do not exhibit similar seasonal patterns (Larkin et al., 2020). 
Additionally, Zhang et al. (2014) found that, depending on the inventory used, PM2.5 emissions 
from wildland fires in the same region (northern sub-Saharan Africa in this case) could differ by 
factors of 2–4 annually, and by 8–12 for a specific burn event. However, our estimated total 
prescribed burn emission of PM2.5 in 2020 (358 thousand tons) closely aligned with what was 
reported (334 thousand tons) by the National Emissions Inventory (NEI) for the same year 
(USEPA, 2023b).

There is significant uncertainty in emissions inventories; examining pollution concentrations from 
different prescribed burn emission inventories can help to understand the bounds of that 
uncertainty. Increasing model grid-resolution may also improve performance and should be 
explored in future studies (Li et al., 2022). The non-CTM-based fusion models to estimate smoke 
PM2.5 levels have been reported and they agreed better with observation than CTM, however they 
are not able to capture the detailed spatial gradients of the smoke PM2.5 (Childs et al., 2022; Zhang 
et al., 2023). The lack of near-burn observations to be included in model training can also be 
attributed to the underestimation of peak smoke PM2.5 concentrations in these studies where CTMs 
predicted lower domain-wide average concentrations than the non-CTM models (Kelly et al., 
2021). Qiu et al. (2024) observed that in the western US, CTMs overestimate PM2.5 concentrations 
during extreme wildfire smoke episodes in 2020 by up to 3-5-fold, while machine learning (ML) 
estimates are largely consistent with surface measurements. However, in the eastern US, where 
smoke levels were much lower in 2020, CTMs show modestly better agreement with surface 
measurements.

The mortality outcomes related to prescribed burn smoke exposure in this study differ from 
previous research due to varying choices in the selection of CRFs. We used CRFs from GEMM 
(Burnett et al., 2018) and IER model (Burnett et al., 2014), which commonly hypothesize that 
PM2.5 components are equally toxic, regardless of their source. Existing literature is mixed on 
whether exposure to wildland fire smoke has different health impacts than exposure to air pollution 
from other sources, as wildland fire PM2.5 has different composition, and exposure patterns (such 
as episodic versus consistent exposure) from other sources (Black et al., 2017; DeFlorio-Barker et 
al., 2019). Some studies found that wildland fire smoke might be more toxic as compared to 
emissions from other sources like industries and power generation. For instance, Aguilera et al. 
(2021) reported that exposure to wildfire smoke could lead to a tenfold increase in the risk of 
respiratory hospitalizations, relative to other PM2.5 sources that may lie, in part, with the high 
content of black carbon (BC) and OC and high aromaticity of wildfire PM2.5. Similarly, Wei et al. 



(2023) observed an annual increase in BC-to-PM2.5 mass ratio across the US, largely due to rising 
wildland fire emissions, hinting at potentially higher PM2.5 toxicity. Past studies have often relied 
on non-source-specific concentration-response-coefficients (CR-coefficients) for wildland fire 
PM2.5-attributed premature deaths estimations, due to the scarcity of epidemiological studies on 
PM2.5 from prescribed burn and associated deaths (Carter et al., 2023; Ford et al., 2018; Pan et al., 
2023; Wei et al., 2023). The relative risk estimates from Krewski et al. (2009) have been 
extensively used for estimating excess long-term all-cause mortality due to wildland fire PM2.5. 
Using the study, we estimated a total of 10,908 deaths (95% CI: 7,347–14,397) during 2013–2020 
in ten southeastern states, aligning with IER and GEMM-5COD model results. Ma et al. (2023) 
found an association between long-term wildfire PM2.5 exposure and all-cause mortality, with a 
0.14% increase in mortality per 1 μg/m3 rise of wildfire PM2.5. Applying this association to 
prescribed burn, we estimated 2,623 all-cause deaths (95% CI: 2,061–3,184) during the study 
period, which is much lower than any other selected model in this study.

Previous studies have primarily investigated short-term premature mortality linked to PM2.5 
exposure from prescribed burns. For instance, during a 15-day study period in 2012, in Northern 
California, short-term exposure to 0.26 μg/m3 of prescribed burns PM2.5 was estimated to cause 15 
premature deaths (~6 deaths per million acres of burn) (Kiely et al., 2024). Maji et al. (2024) 
reported 444 premature per year (~200 deaths per million acres of burn) attributed to short-term 
prescribed burn PM2.5 exposure to 0.94 μg/m3 across the Georgia and Surrounding Areas (US) 
during 2015-2020. The current uncertainty in the impacts of PM2.5 and MDA8-O3 from prescribed 
burn on premature deaths poses a significant challenge in health risk analysis. This underscores 
the need for further studies on the health effects and toxicity of prescribed burn’s pollution versus 
other sources of pollution. Future research should aim to develop a CR-coefficient specific to 
prescribed burn PM2.5 to improve the accuracy of health impact assessments. 

Wildfire smoke can travel long distances, carrying O3 precursors that can be advected into marine 
environments (Schneider et al., 2024). Studies indicate that O3 formation from wildfire smoke can 
increase rapidly over oceanic or estuarine waters due to inhibited deposition, shallower boundary 
layers, and emissions from ships (Pan and Faloona, 2022). Our findings reflect similar behavior of 
O3 over the coastal regions of Georgia, South Carolina, and North Carolina, where prescribed burn 
can elevate O3 levels up to ~24 ppb. Likewise, prescribed burn contributed to an increase of ~18 
ppb in O3 levels along the Chesapeake Bay shoreline (Figure S17). 

As prescribed burn smoke exposure is anticipated to increase in the future (Swain et al., 2023), 
and due to growing concern of public health associated with wildfire smoke exposures, there is 
growing interest to reduce the health-related damages from wildfire events (Cromar et al., 2024; 
Jonko et al., 2024). The goals of the current actions are to re-introduce smaller and more frequent 
fires (via prescribed burning) to help reduce the occurrence of large and high-intensity fires 
(Lydersen et al., 2017; Prichard et al., 2020b). Multiple studies have acknowledged the benefits of 
fuel reduction via prescribed burning in mitigating wildfire risk but have also highlighted the 
dangers of introducing additional treatment-related smoke (Jones et al., 2022; Tubbesing et al., 
2019). Such studies have called for increased quantification of air-quality and health trade-offs in 
forest and fire management decision-making (Schollaert et al., 2023). 



Wu et al. (2023) found that, the areas in conifer forests in California, US, that have recently burned 
at low intensity are 64.0% less likely to burn at high intensity in the following years relative to 
unburned areas. Schollaert et al. (2023) reported that treating 4% of the landscape annually (~3.4% 
thinning and 0.6% prescribed burns) in the ~1 million ha Tahoe–Central Sierra Initiative area in 
California could reduce total PM2.5 smoke concentration by approximately 60% compared to a 
business-as-usual scenario over a 40-year period. Simulating a 11,220 km2 wildfire burn area in 
Northern California under prescribed fire conditions. Kiely et al. (2024) reported a 52% reduction 
in PM2.5 emissions, decreasing from 0.27 to 0.14 Tg. Similar findings have been noted in previous 
studies, where prescribed fires were shown to reduce future wildfire intensity and frequency, 
thereby decreasing wildfire emissions, as wildfires emit significantly higher amounts of PM2.5, 
with average emission factors ranging from 3 to 20 times greater than those of prescribed fires 
(Kiely et al., 2024; Kramer et al., 2023; Rosenberg et al., 2024; Williamson et al., 2016). However, 
the 2019–2020 catastrophic Black Summer wildfires in eastern Australia raised questions about 
the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions 
(Clarke et al., 2022). 

Despite some uncertainties, our data links prescribed burn to air quality (Figure S18 and S19) and 
reveals that exposure to prescribed burn smoke increases burden of premature mortality. These 
findings highlight the need for targeted public health advisories and emergency response strategies 
in the southeastern US during high burning days. This study underscores the need for improved 
air quality management strategies and stronger environmental health policies that consider 
prescribed burn impacts in urban and rural planning.

4. Conclusion

This comprehensive study quantified the eight year-round impacts of prescribed burn on 24-hour 
average PM2.5 and maximum daily 8-hour averaged ozone (MDA8-O3) concentrations, as well as 
associated excess premature mortality due to long-term prescribed burn PM2.5 and MDA8-O3 
exposure in ten southeastern US states. Prescribed burn emissions were responsible for 15% of the 
state-level annual average ambient PM2.5 in Alabama, Florida, Georgia, Mississippi, and South 
Carolina while their contribution to O3 was less than 1%. The study also mapped the spatial 
distributions of prescribed burn-related PM2.5 and O3 levels across different seasons, revealing that 
January–April is the most extensive burning season, significantly affecting air quality. 
Additionally, it was found that moderate burning season in October–December also significantly 
impacts air quality, a situation previously unreported. Depending on the concentration response 
function used, annual premature deaths due to prescribed burn PM2.5 ranged from 1,076 (IER 
model) to 2,552 (GEMM-NCD+LRI model) across the ten southeastern states. Furthermore, 
prescribed burn MDA8-O3 is responsible for approximately 167 premature deaths annually. 
Despite a decrease in smoke concentrations in 2020 compared to 2013, premature deaths increased 
due to an aging population and higher baseline mortality. High premature death rates were 
especially prominent in urban areas. Given the lack of long-term epidemiological studies 
specifically on the association between prescribed burn PM2.5 and premature deaths, this study 
assumed equivalent responses between prescribed burn PM2.5 and all-source PM2.5 in its analysis 
of premature deaths. If prescribed burn PM2.5 is more toxic than all-source PM2.5 as some studies 
suggest, then associated premature deaths would be higher than estimates in this study. Therefore, 
conducting more long-term epidemiological studies on the health effects of prescribed burn PM2.5 



is crucial. Additionally, local policies and guidance are vital to minimize the health risks associated 
with prescribed burn and protect the public from the adverse effects of exposure to prescribed burn 
smoke.
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Appendices

Table A.1. Annual average prescribed burn smoke PM2.5 in southeastern US states.

Prescribed burn smoke PM2.5 [mean ± SD (median)] (µg/m3)

States 2013–
2020

2013 2014 2015 2016 2017 2018 2019 2020

Alabama 0.90±0.15 
(0.91)

0.86±0.13 
(0.87)

0.80±0.16 
(0.81)

1.05±0.21 
(1.07)

0.89±0.13 
(0.90)

1.09±0.25 
(1.04)

0.88±0.19 
(0.86)

0.89±0.14 
(0.88)

0.82±0.14 
(0.82)

Florida 0.65±0.19 
(0.64)

0.75±0.19 
(0.77)

0.71±0.12 
(0.69)

0.70±0.27 
(0.66)

0.65±0.18 
(0.65)

0.68±0.28 
(0.66)

0.64±0.20 
(0.62)

0.54±0.21 
(0.51)

0.52±0.23 
(0.47)

Georgia 0.91±0.19 
(0.91)

0.80±0.18 
(0.79)

0.91±0.18 
(0.91)

1.00±0.25 
(0.99)

0.94±0.16 
(0.96)

1.23±0.32 
(1.27)

0.91±0.20 
(0.92)

0.80±0.18 
(0.83)

0.74±0.2 
(0.74)

Kentucky 0.44±0.05 
(0.44)

0.41±0.05 
(0.41)

0.33±0.04 
(0.33)

0.47±0.06 
(0.48)

0.53±0.09 
(0.52)

0.56±0.07 
(0.56)

0.43±0.06 
(0.42)

0.48±0.09 
(0.48)

0.38±0.04 
(0.38)

Mississippi 0.65±0.1 
(0.64)

0.66±0.08 
(0.66)

0.58±0.09 
(0.58)

0.74±0.13 
(0.73)

0.61±0.12 
(0.62)

0.73±0.14 
(0.74)

0.58±0.12 
(0.58)

0.66±0.12 
(0.67)

0.63±0.12 
(0.62)



North 
Carolina

0.48±0.12 
(0.48)

0.35±0.08 
(0.35)

0.44±0.1 
(0.43)

0.50±0.12 
(0.50)

0.60±0.17 
(0.59)

0.67±0.19 
(0.68)

0.46±0.14 
(0.47)

0.49±0.15 
(0.50)

0.38±0.09 
(0.38)

South 
Carolina

0.65±0.09 
(0.65)

0.54±0.10 
(0.52)

0.67±0.09 
(0.65)

0.67±0.12 
(0.68)

0.72±0.12 
(0.72)

0.98±0.14 
(1.01)

0.65±0.08 
(0.65)

0.58±0.13 
(0.57)

0.43±0.06 
(0.44)

Tennessee 0.55±0.09 
(0.54)

0.52±0.07 
(0.52)

0.44±0.06 
(0.43)

0.58±0.09 
(0.58)

0.63±0.14 
(0.63)

0.65±0.1 
(0.66)

0.53±0.12 
(0.53)

0.61±0.12 
(0.62)

0.48±0.08 
(0.48)

Virginia 0.37±0.07 
(0.38)

0.26±0.04 
(0.26)

0.29±0.07 
(0.29)

0.38±0.08 
(0.38)

0.51±0.10 
(0.52)

0.47±0.09 
(0.47)

0.38±0.08 
(0.38)

0.43±0.09 
(0.44)

0.32±0.05 
(0.31)

West 
Virginia

0.33±0.05 
(0.33)

0.27±0.04 
(0.27)

0.26±0.05 
(0.26)

0.31±0.05 
(0.31)

0.43±0.07 
(0.42)

0.40±0.07 
(0.39)

0.33±0.05 
(0.34)

0.39±0.07 
(0.39)

0.25±0.04 
(0.25)

Table A.2. Annual average prescribed burn smoke MDA8-O3 in southeastern US states.

Prescribed burn smoke MDA8-O3 [mean ± SD (median)] (ppb)



States 2013–
2020

2013 2014 2015 2016 2017 2018 2019 2020

Alabama 0.42±0.09 
(0.40)

0.54±0.11 
(0.51)

0.52±0.13 
(0.49)

0.37±0.10 
(0.36)

0.34±0.07 
(0.33)

0.47±0.15 
(0.43)

0.36±0.1 
(0.34)

0.38±0.09 
(0.37)

0.31±0.08 
(0.29)

Florida 0.46±0.12 
(0.44)

0.66±0.17 
(0.64)

0.63±0.12 
(0.63)

0.41±0.12 
(0.4)

0.36±0.09 
(0.34)

0.44±0.19 
(0.41)

0.41±0.15 
(0.4)

0.33±0.12 
(0.32)

0.35±0.12 
(0.34)

Georgia 0.51±0.13 
(0.51)

0.61±0.17 
(0.59)

0.69±0.16 
(0.7)

0.45±0.12 
(0.45)

0.44±0.10 
(0.44)

0.64±0.19 
(0.65)

0.44±0.13 
(0.44)

0.42±0.1 
(0.41)

0.35±0.12 
(0.32)

Kentucky 0.21±0.03 
(0.21)

0.27±0.02 
(0.27)

0.25±0.04 
(0.25)

0.19±0.03 
(0.19)

0.18±0.04 
(0.18)

0.25±0.04 
(0.26)

0.17±0.03 
(0.17)

0.22±0.04 
(0.23)

0.16±0.02 
(0.16)

Mississippi 0.30±0.04 
(0.31)

0.41±0.05 
(0.41)

0.4±0.07 
(0.4)

0.27±0.06 
(0.27)

0.23±0.05 
(0.24)

0.31±0.07 
(0.31)

0.23±0.05 
(0.23)

0.27±0.05 
(0.27)

0.23±0.04 
(0.23)

North 
Carolina

0.26±0.05 
(0.26)

0.25±0.06 
(0.25)

0.36±0.08 
(0.36)

0.24±0.06 
(0.23)

0.25±0.06 
(0.24)

0.37±0.09 
(0.37)

0.18±0.04 
(0.18)

0.25±0.07 
(0.25)

0.16±0.04 
(0.16)

South 
Carolina

0.36±0.05 
(0.35)

0.39±0.1 
(0.37)

0.53±0.07 
(0.53)

0.31±0.04 
(0.3)

0.32±0.06 
(0.31)

0.54±0.08 
(0.54)

0.27±0.05 
(0.26)

0.29±0.05 
(0.29)

0.19±0.03 
(0.18)



Tennessee 0.26±0.04 
(0.26)

0.33±0.04 
(0.33)

0.31±0.07 
(0.31)

0.23±0.05 
(0.23)

0.22±0.07 
(0.22)

0.29±0.05 
(0.29)

0.2±0.03 
(0.2)

0.26±0.06 
(0.26)

0.18±0.04 
(0.18)

Virginia 0.19±0.04 
(0.19)

0.20±0.04 
(0.19)

0.25±0.06 
(0.23)

0.18±0.04 
(0.18)

0.21±0.05 
(0.20)

0.24±0.06 
(0.23)

0.15±0.03 
(0.14)

0.22±0.05 
(0.22)

0.13±0.02 
(0.13)

West 
Virginia

0.17±0.02 
(0.18)

0.21±0.03 
(0.21)

0.25±0.04 
(0.24)

0.16±0.02 
(0.16)

0.17±0.03 
(0.17)

0.19±0.03 
(0.19)

0.13±0.02 
(0.13)

0.20±0.04 
(0.20)

0.12±0.02 
(0.12)

Table A.3. Yearly non-accidental premature deaths attributed to prescribed burn PM2.5 exposure.



GEMM NCD+LRI [mean (95%CI)]State

2013 2014 2015 2016 2017 2018 2019 2020

Alabama 184 
(151-
217)

167 
(137-
197)

325 (264-385) 319 (259-379) 405 (328-481) 50 (41-59) 339 (275-402) 364 (295-433)

Florida 207 
(168-
244)

215 
(176-
254)

283 (229-336) 315 (255-375) 328 (265-390) 344 (278-410) 267 (217-318) 295 (239-352)

Georgia 383 
(312-
451)

430 
(351-
507)

619 (503-732) 636 (517-754) 839 (681-995) 440 (357-523) 670 (544-794) 665 (539-790)

Kentucky 88 
(72-
104)

71 
(59-
84)

118 (97-140) 143 (117-169) 166 (135-197) 732 (593-868) 136 (111-161) 126 (103-150)

Mississippi 68 
(55-
80)

61 
(50-
72)

111 (91-133) 101 (82-120) 130 (106-156) 350 (284-416) 112 (91-133) 125 (101-149)



North 
Carolina

215 
(175-
254)

271 
(221-
321)

369 (300-437) 488 (396-578) 563 (457-667) 265 (215-315) 453 (368-537) 428 (347-508)

South 
Carolina

139 
(113-
165)

171 
(140-
203)

214 (174-254) 247 (201-293) 342 (278-406) 243 (197-288) 231 (188-275) 213 (173-254)

Tennessee 152 
(124-
180)

135 
(110-
159)

221 (180-261) 263 (214-312) 291 (237-346) 129 (105-152) 279 (227-331) 260 (211-309)

Virginia 116 
(94-
137)

123 
(101-
146)

190 (155-226) 274 (223-325) 273 (222-324) 103 (84-123) 251 (204-297) 228 (185-271)

West 
Virginia

31 
(25-
37)

29 
(24-
35)

41 (33-48) 56 (46-67) 58 (48-69) 235 (191-279) 53 (43-63) 43 (36-52)

Total 1583 
(128
9-
1869
)

1673 
(136
5-
1972
)

2491 (2022-
2948)

2842 (2305-
3366)

3397 (2754-
4026)

2890 (2342-
3428)

2792 (2264-
3307)

2747 (2223-
3262)



Table A.4. Yearly long-term all-cause premature deaths attributed to prescribed burn MDA8-O3 exposure.

all-cause premature deaths [Mean (95% CI)]States

2013 2014 2015 2016 2017 2018 2019 2020

Alabama 21 (14-
28)

19 (13-
26)

15 (10-21) 15 (10-20) 20 (13-27) 16 (11-22) 18 (12-24) 14 (9-19)

Florida 29 (19-
40)

34 (22-
46)

21 (14-29) 18 (12-25) 20 (13-28) 21 (14-29) 17 (12-24) 18 (12-25)

Georgia 43 (28-
58)

51 (34-
70)

36 (23-49) 39 (26-54) 56 (36-76) 38 (25-52) 41 (27-55) 31 (20-42)



Kentucky 10 (7-
14)

9 (7-13) 8 (5-11) 7 (5-10) 11 (7-15) 7 (5-11) 10 (7-14) 7 (5-10)

Mississippi 7 (5-10) 7 (5-10) 5 (3-7) 4 (3-6) 5 (4-8) 4 (3-6) 5 (4-7) 4 (3-6)

North Carolina 21 (14-
29)

33 (22-
45)

23 (15-32) 26 (17-36) 38 (25-52) 20 (13-27) 30 (20-40) 19 (13-27)

South Carolina 14 (10-
20)

21 (14-
29)

13 (9-18) 13 (9-19) 23 (15-32) 12 (8-17) 14 (10-20) 9 (6-13)

Tennessee 16 (11-
23)

16 (11-
22)

13 (9-18) 13 (9-17) 16 (11-22) 11 (8-16) 16 (11-22) 11 (8-16)

Virginia 12 (8-
17)

15 (10-
21)

12 (8-17) 14 (10-20) 17 (11-24) 10 (7-14) 15 (10-21) 11 (7-15)

West Virginia 3 (3-5) 4 (3-6) 3 (2-4) 3 (2-4) 3 (3-5) 2 (2-3) 3 (3-5) 2 (2-3)

Total 177 
(115-
240)

209 
(135-
283)

146 (95-198) 153 (99-207) 209 (135-284) 143 (92-194) 169 (109-229) 127 (82-172)
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Highlights:

• Prescribed burns are a major source of air pollution in the southeastern US.

• A total of 25.1 million acres of land were treated with prescribed burns in the ten 
southeastern US states during 2013–2020.

• Approximately 15% of ambient PM2.5 in Alabama, Florida, Georgia, Mississippi, and South 
Carolina originates from prescribed burns.

• Prescribed burns were responsible for an average 1.0% increase in ambient MDA8-O3 in 
Alabama, Florida, Georgia, and South Carolina.

• Prescribed burn PM2.5 and MDA8-O3 resulted in a total of 20,416 excess non-accidental 
and 1,332 all-cause premature deaths in the ten southeastern states.



Figures

  

Figure 1. Spatial distribution of total prescribed burned area observed by adjusted-FINN (top) and 
corresponding total emissions of PM2.5, VOCs  and NOx (bottom) during 2013–2020 
(unit is acres for burned area and tons for PM2.5, VOCs and NOx) emissions.



  

 



  

 

Figure 2. Spatial distributions of yearly average prescribed burn specific PM2.5 concentrations 
(µg/m3) during 2013–2020. 



  

 



  

 

Figure 3. Spatial distributions of yearly average prescribed burn specific MDA8-O3 
concentrations (ppb) during 2013–2020.
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Figure 4. Boxplot of state-specific prescribed burn contributed daily average PM2.5 (top panel) 
and daily MDA8-O3 (bottom panel) from 2013-2020. The top and bottom of the box 
indicate the 75th and 25th percentile of yearly values. The horizontal solid lines indicate 
the interquartile range of yearly values. The blue horizontal blue line is the annual mean 
and the top and bottom pink star indicate the 95th and 5th percentile of yearly values. The 
black horizontal long line indicates the average prescribed burn PM2.5 and MDA8-O3 
over the study states from 2013-2020. 



  

 



  

 

Figure 5. Spatial distributions of seasonal average prescribed burn specific PM2.5 (µg/m3) (top 
row) and MDA8-O3 concentrations (ppb) (bottom row) during 2013–2020. January-
April is the extensive burning season, May–September is the low burning season and 
October–December is the moderate burning season. 



 

Figure 6. Distributions of the total smoke-days due to prescribed fire PM2.5 (left) and MDA8-
O3 (right) during 2013–2020. We defined a prescribed fire smoke-day as when 
prescribed burn smoke contributed ≥10% of NAAQS, i.e., ≥ 3.5 µg/m3 to 24-hr 
average PM2.5 mass concentration (NAAQS is 35 µg/m3) and ≥ 7 ppb to MDA8-O3 
(NAAQS is 70 ppb).

 

Figure 7. Distributions of premature mortality due to prescribed burn smoke PM2.5 exposure 
(left) and MDA8-O3 exposure (right) at the gridded-level (12 km2). The estimates of 
premature mortality are reported as the sum of annual values over 2013–2020. The 



concentration-response relationship from GEMM-NCD+LRI was used for PM2.5 and 
Sun et al. (2022) study for MDA8-O3.
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