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ABSTRACT: Smoke from wildfires poses a substantial threat to health in communities near and far. To mitigate the extent and
potential damage of wildfires, prescribed burning techniques are commonly employed as land management tools; however, they
introduce their own smoke-related risks. This study investigates the impact of prescribed fires on daily average PM, 5 and maximum
daily 8-h averaged O; (MDAS-O;) concentrations and estimates premature deaths associated with short-term exposure to prescribed
fire PM, s and MDAS-O; in Georgia and surrounding areas of the Southeastern US from 2015 to 2020. Our findings indicate that
over the study domain, prescribed fire contributes to average daily PM,¢ by 0.94 + 1.45 ug/m® (mean + standard deviation),
accounting for 14.0% of year-round ambient PM, ;. Higher average daily contributions were predicted during the extensive burning
season (January—April): 1.43 + 1.97 ug/m? (20.0% of ambient PM, ;). Additionally, prescribed burning is also responsible for an
annual average increase of 0.36 + 0.61 ppb in MDAS-O; (approximately 0.8% of ambient MDAS-O,) and 1.3% (0.62 + 0.88 ppb)
during the extensive burning season. We estimate that short-term exposure to prescribed fire PM, 5 and MDAS8-O; could have caused
2665 (95% confidence interval (CI): 2249—3080) and 233 (95% CI: 148—317) excess deaths, respectively. These results suggest
that smoke from prescribed burns increases the mortality. However, refraining from such burns may escalate the risk of wildfires;
therefore, the trade-offs between the health impacts of wildfires and prescribed fires, including morbidity, need to be taken into
consideration in future studies.

KEYWORDS: prescribed burn, chemical transport model, air pollution, premature deaths

1. INTRODUCTION basis (every two years or so) with smaller burned areas such
that exposures to smoke plumes from prescribed fires are
generally shorter in duration but occur more frequently than
wildfire events.”

Over the span of 1985-—2020, the annual average of
prescribed burning in the US amounted to 11 million acres
(about half the area of Kentucky).' However, prescribed burns

In recent years, escalating impacts of climate change have led
to unprecedented levels of smoke exposure caused by wildfires
across the globe. Within the United States (US), the annual
acreage consumed by wildfires has doubled over the past two
decades." Prescribed fires serve as a strategic land management
tool used in reducing the buildup of combustible materials, or
fuels, thereby lowering the risk of catastrophic wildfires, as well

as in ecosystem restoration and habitat enhancement.””" Received: January 25, 2024 il =
Prescribed fires are carefully executed under specific environ- Revised:  June 17, 2024 Bl .
mental conditions.”~” They are low-intensity fires, and the Accepted:  June 20, 2024 .

smoke they emit differs substantially from wildfire smoke in Published: June 29, 2024

. ; 1
terms of constituents, concentrations, and heat release.
Furthermore, prescribed burns are conducted on a regular
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constitute only about 10% of the total treatments implemented
by the US Forest Service. Currently, suppression remains the
primary approach to wildfire management, though increased
use of prescribed burns is planned.” Of the total prescribed
burning in the US, 71% of the burns (by number) are in the
Southeast with a rate of increase of 0.15 million acres/year.
Prescribed burning is responsible for ~24% of the primary
PM, (particulate matter with aerodynamic diameter <2.5
um) emissions in the Southeastern US."° It is estimated that
the prescribed fires contribute annually ~10 to 15% of ambient
PM,s to ~20 to 30% during the extensive burning season
(January—April) in the Southeastern US.” "'

As a dominating source of outdoor air pollution, prescribed
burns are not without their own set of potential health risks or
adverse health impacts."> While more is known about the
potential effects of wildfire smoke exposure,'”'* less is known
about potential health threats from prescribed burns, especially
for vulnerable populations. Afrin and Garcia-Menendez'"”
reported 70 excess mortality cases among older adults
attributed to prescribed smoke PM,; exposure during the
burning season in Georgia. Carter et al.'® estimated that
human-ignited fire smoke was responsible for 7400 premature
deaths in the US in 2003, which increased to 20 000 in 2018.
Moreover, there are some indications of an uneven distribution
of the burden. For example, Johnson-Gaither et al.'”
investigated the susceptibility of African Americans to
prescribed fire smoke exposure in Georgia and observed that
permitted burns with the highest impact on air quality also
corresponded to areas with higher African American
populations.

While much of the research has primarily focused on
prescribed burns during the extensive burning season, which
accounts for approximately 60% of total burns in the
Southeastern US, it is crucial not to disregard the impact of
the out-of-season burns occurring during other times of the
year due to their potential public health impacts. In addition,
there is a scarcity of studies that have explored the influence of
prescribed fire smoke contribution to ozone (O,). Given these
considerations, there is a compelling need to comprehensively
assess the year-round impacts of prescribed fire. This involves
quantifying the contribution of prescribed burning to air
pollution, including PM, 5 and O; concentrations, to gauge the
health burden associated with prescribed burn smoke exposure
in the region.

Accordingly, here, we simulate the impacts of prescribed
burns on daily 24-h average PM, s and maximum daily average
8-h O; (MDAS-0,) during the 2015—2020 period in a portion
of the Southeastern US that includes the entire state of Georgia
and portions of surrounding states (ie., Alabama, Florida,
North Carolina, South Carolina, and Tennessee) and use those
results to estimate the annual number of premature deaths
attributable to short-term prescribed fire smoke exposure. We
apply the following framework: (a) identify daily prescribed
fire information from satellite-derived product Fire INventory
from NCAR (FINN) (version 2.5) to estimate three-
dimensional prescribed burning emissions for the Community
Multiscale Air Quality (CMAQ) model (spatial resolution of 4
X 4 km?); (b) simulate the prescribed fire contributions to
daily average PM,; and MDAS8-O; using CMAQ; (c) fuse
simulated PM, 3 and MDAS-O; fields with daily observations
at ambient surface monitors to generate an “observation-
adjusted prescribed burn impact”; and (d) use the “observa-
tion-adjusted prescribed burn impact” data to assess premature

deaths resulting from short-term exposure to PM,s and
MDAS-O;. A simplified flowchart of the study framework is
presented in Figure S1.

2. MATERIALS AND METHODS

2.1. Prescribed Burn Identification and Emissions.
Prescribed burns are the major source of PM, g pollution in the
Southeastern US; however, prescribed fire activity information
(e.g., location, date, time, and burned area) in burn permit
records may be inaccurate and those records are not always
readily accessible for all states.® Satellite-based remote sensing
products can fill data gaps; however, they do not differentiate
prescribed burns from other wildland fires. In the present
study, we follow the method developed by Li et al.'® to identify
prescribed burns in the FINN database. Similar to clustering
algorithms developed for detecting large wildfires,"”*" this
method aggregates the FINN fires based on spatial and
temporal separation. First, we removed agricultural burns by
considering fires that occurred in agriculture lands. Then, we
focused on detecting large wildfires. Prescribed burns typically
start and end on the same day, while wildfires can last multiple
days, so we assumed that the fires that have more than 1 day
duration are wildfires. In this way, we matched about 20% of
the Wildland Fire Interagency Geospatial Services (WFIGS)
wildfire records.'”*® The permit-reported burned areas are
considered more accurate than the satellite-reported burned
areas;'’ therefore, a linear regression model was used to
calibrate the FINN-based prescribed burned area with area in
permit records at 4-km resolution spatial grid level. The
resulting adjusted burned area is used as an input to the
BlueSky Smoke Modeling Framework to estimate three-
dimensional hourly prescribed burning emissions for
CMAQ.”""** BlueSky links together fire location, fire size,
fire type, fuel loading, fuel consumption, speciated emissions,
smoke dispersion, and plume trajectories. Three-dimensional
gridded meteorological data required for trajectory and
dispersion calculations are provided by the Weather Research
and Forecasting (WRF) model.””~** The daily total emissions
from FINN and BlueSky were highly correlated and consistent
with each other.'® However, we chose to use the fire emissions
calculated by using BlueSky rather than directly using the fire
emissions provided by FINN because BlueSky has a more
advanced fuel classification algorithm than FINN.* It also
contains a comprehensive archive of emission factors for these
fuels.”’

2.2. Air Quality Simulations. We simulated daily air
quality from 1st January 2015 to 31st December 2020 using
meteorology from the WRF model in CMAQ_version 52,%a
fully coupled chemical transport model (CTM). CMAQ
employs state-of-the-science representations of atmospheric
processes affecting transoport, transformation, and deposition of
pollutant species.”® ™" Emissions include anthropogenic
emissions based on the National Emission Inventory (NEI)®’
as well as biogenic, windblow dust, and wildfire emission,>
while prescribed fire emissions were derived from the BlueSky
Smoke Modeling Framework, as described in Section 2.1.1%8
We used the EPA 2011v6 Platform™ for modeling the
anthropogenic emissions. The sectorized inventories used
were the 2011 NEI, projected to 2017, and kept the same for
2015-2020. The modeling domain covers Georgia and
surrounding areas of the Southeastern US from 28.98°N and
—87.82°W to 36.28°N and —79.13°W with 180 X 180 grid
boxes at 4 km X 4 km horizontal resolution (Figure S2), with

https://doi.org/10.1021/acs.est.4c00890
Environ. Sci. Technol. 2024, 58, 12343—12355


https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c00890/suppl_file/es4c00890_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c00890/suppl_file/es4c00890_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c00890?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Environmental Science & Technology

pubs.acs.org/est

35S vertical levels extending up to 50 hPa. The concentrations
of pollutants were calculated by simulating two scenarios with
CMAQ, a baseline simulation with all emissions (C5;), and a
second simulation in which prescribed fire emissions were not
included (C},_pg). This allowed to quantify the impact from
prescribed burns as

ACpg(x, t) = Ciy(x, t) — Cho_pp(x, t) (1)

where ACpp is the concentration associated with prescribed
burning emissions, and « and ¢ indicate the variation in three-
dimensional space and time.

2.3. Data-Fusion Method. The CMAQ, like any other
CTM, has uncertainties related to emissions inputs, meteoro-
logical parameter data, and physical/chemical transport
processes; hence, the simulation results differ from the results
of field measurements.”™** To reduce the model biases and
error, in the current study, we calibrated daily average PM, g
and MDA8-Oj results simulated by CMAQ_with observation,
following the data-fusion (DF) approach of Friberg et al.** For
data-fusion and model evaluation, observed daily ambient
PM,; and MDAS8-O; concentrations were obtained from,
respectively, 99 and 105 EPA-AQS (Environmental Protection
Agency-Air Quality System) monitors in the study area.*
Equation 2 reflects the regression model applied to produce
optimized fused concentration fields C3f («, t) by computing a
weighted average with the weight depending on the spatial
autocorrelation of observations and the correlation between
observations and CMAQ _simulation results (S1.1):

OBS_ (t —
CEIF(x, t) = W(x, t) X (C)_Tmsr(n>]kn X FC(x)
; FC(x)
+ (1 - W(x, t)) X Cau(x, t) X|—
C'(x, 1)
X ﬂseason(t)
(2
where
FC(x) = ay, X M, t)’

2
B (1) = e 5t

The resulting product Cyf («, t) is a new data-fused field that
captures the temporal variations in local observations as well as
spatial variability in CMAQ_simulations. Here, OBS_, is daily
observations at each monitor (m), overbar indicates temporal
averaging (annual), @y, is a regression parameter derived for
each year, f# is a parameter derived for all years, and W is an
average weighting factor for the study period. S, is the
seasonal correction function modeled as a smooth trigono-
metric function with two fitted parameters, amplitude (A) and
day of peak correction (f,,,)-

In locations without a monitor, the fused fields relied more
heavily on CMAQ simulations. This method provided a way to
extend the coverage of air quality assessments to areas where
direct observational data were unavailable, thereby improving
the understanding of spatial and temporal variability of air
pollution across a broader area.

The fused daily total PM,; and MDAS8-O; fields were
multiplied by the ratio of the burn impacts to the total PM, g
and MDAS-Oj; from CMAQ for each day and each grid cell to
generate an ‘observation-adjusted burn impact, ACpg (x, t), as
follows:

AChy(x, t) = ACpy(x, t) X [C'(x, £)/Co(x, )] (3)

2.4. Mortality Impact Assessment. We estimated
prescribed burn smoke-associated premature deaths using the
log—linear association of concentration—response functions
(CREFs) for premature mortality impacts from acute exposures.
In this study, we estimated all-cause, cardiovascular, and
respiratory premature deaths attributed to daily average PM, g
and MDAS8-O; exposure. General forms of CRFs used to
calculate prescribed burn smoke exposure-attributable mortal-
ity are provided below:'**"~*

ADpy(t) = . {[1 - &CRCXAC@F(%OI

X

X By(t) X Pop(x, t)}
(4)

where ADpy(t) is the cause-specific excess premature deaths
due to prescribed burn smoke exposure for a year t; AChy (i, t)
is the county-level annual average air pollution contributed by
prescribed burns, obtained after regridding the pollution
concentration from eq 3 at county-level; CRC is the
concentration response (CR)-coefficient, By(t) is the county-
specific and cause-specific baseline incidence rates; and Pop(x,
t) is the county-level exposed population. B,(t) X Pop(x, t) is
the cause-specific mortality registered in the county. The
county-level registered mortality data were obtained from the
Centers for Disease Control and Prevention’s (CDC’s)
National Vital Statistics System. The county-level results
were aggregated to obtain summaries for Georgia and the
study domain.

For O3, the associated mortality impacts were determined by
its concentration.”’ However, the mortality impacts of PM,
are related to its composition.””*’ Previous studies estimated
premature deaths for prescribed burn PM, using CR-
coefficients developed from all-source-specific total PM,
mass.'“** However, Aguilera et al.*® found that risks associated
with wildland fire smoke are higher compared to emissions
from other sources like industries and power generation.”
They reported that exposure to wildfire smoke could lead to a
10-fold increase in the risk of respiratory hospitalizations,
relative to other PM, s sources, which may lie, in part, with
high contents of black carbon (BC) and organic carbon (OC)
and high aromaticity of wildfire-PM,;. To calculate the
mortality attributable to prescribed fire PM,;, we used the
CR-coefficient reported by Chen et al."* from a pooled meta-
analysis (Table S1). These coefficients were developed to
quantify the association between short-term exposure to
wildfire-related PM, 5 and mortality."* For short-term MDAS-
O; exposure-attributed mortality, the CR-coeflicient is derived
from a meta-analysis study and an epidemiological study
conducted based on outdoor O; exposure in the US (Table
S1). 4647

As a comparative analysis, we employed the same mortality
assessment method, utilizing gridded pollution and gridded
population data along with state-specific baseline mortality
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Figure 1. Spatial distribution of the total prescribed burned area observed by adjusted-FINN (top) and corresponding emission of total PM,
VOCs, and NOx (bottom) during 2015—2020 (units are acres for burn area and tons for PM,, VOCs, and NOx).
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Figure 2. Density scatterplots of observed and data-fusion (DF) concentrations of (a) daily average PM, 5 and (b) MDAS-O; during 2015—2020.

The dotted line shows 1:1.

from Global Burden of Disease (GBD, 2019)* to estimate
prescribed burn-attributable premature deaths. Population data
at a resolution of 1 X 1 km?® from 2015 to 2020 were obtained
from the Gridded Population of the World (GPW) (https://
www.worldpop.org/) and were resampled using the nearest
neighbor approach to match the CMAQ_grid.

3. RESULTS AND DISCUSSIONS

The clustering algorithm estimated nearly 70% of total fires as
prescribed fire, covering 13.3 million acres of the study domain
during the study period. The highest burn area was observed in

12346

2017 with 2.74 million acres of prescribed burns (Figure 1).
On average, 68% of the total prescribed burns are conducted
during the burning season. The largest amounts of prescribed
burning were recorded in Southwest Georgia. In these six
years, prescribed burning contributed an estimated 1.7 million
tons of PM, 5, 0.19 million tons of nitrogen oxides (NOx), and
1.76 million tons of volatile organic compound (VOC)
emissions. The highest prescribed burn-related pollutant
emissions were observed in 2017 (PM,s: 0.35 million tons;
NOx: 0.04 million tons; VOCs: 0.37 million tons; Figures S3—
S6 and Table S2).

https://doi.org/10.1021/acs.est.4c00890
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Figure 3. Spatial distributions of yearly average prescribed burn specific PM, s concentrations (ug/m®) during 2015—2020.

3.1. Model Performance Evaluation. Evaluation of
CMAQ_indicated that the model generally underestimated
PM,; (by ~20%) and overestimated MDAS-O; (by ~40%)
throughout the study period. After data-fusion, the model
performance improved both for daily PM,s and MDAS-O;.
The data-fused fields overestimate PM, 5 by ~0.6% and slightly
higher (by ~2%) in the burning season. The fusion method
captures the observed PM, 5 reasonably well at all monitoring
stations (coefficient of determination (R*) = 0.55, mean bias
(MB) = —0.39 ug/m?, root-mean-square error (RMSE) = 3.49
ug/m? and normalized mean bias (NMB) = —4.69%) (Figure
2a). During the extensive burning season, both observed and
simulated PM, 5 concentrations were higher than during any
other season. During that period, the simulation captures the
observed PM, 5 more accurately (R* = 0.71, MB = —0.39 ug/
m®, RMSE = 2.28 ug/m? and NMB = —4.75%) as compared
to the low-burn season (May—September) (R* = 0.37, MB =
—0.34 pug/m?, RMSE = 4.64 ug/m® and NMB = —3.87%).

Data-fusion provided good agreement with the USEPA
measurements for MDAS-O,, with R* = 0.91 and RMSE = 4.03
ppb (MB = —1.73 ppb and NMB = —4.38%) (Figure 2b), and
the model performance is similar during the extensive burning
season (R* = 0.89, MB = —1.51 ppb, RMSE = 3.67 ppb, and
NMB = —3.64%) and low-burn season (R* = 0.91, MB =

—2.03 ppb, RMSE = 4.35 ppb, and NMB = —5.06%) (Table S3
and Figure S7).

3.2. Cross-Validation Performance. The data-fusion
method performance was evaluated using a comprehensive
10-fold 10% data withholding cross-validation (CV) analysis.
Across 99 and 105 monitors for PM,; and MDAS-O;,
respectively, over six years, the number of withheld data
corresponding to the number of observations was 146
thousand for PM,; and 147 thousand for MDAS8-O;. The
data withholding data-fusion results (Table S4) also had small
MB, RMSE, and NMB and larger R? values compared to the
CMAQ results. The average of all 10 CV results meets the
criteria and goals recommended by Emery et al.*’ for air
quality modeling, both for MDAS-O5 (R* = 0.89, MB = —1.73
ppb, RMSE = 4.18 ppb, and NMB = —4.36%) and PM,  (R* =
0.54, MB = —0.39 ug/m’, RMSE = 3.53 ug/m’ and NMB =
—4.69%).

The data-fusion method was also evaluated using a leave-
one-location-out cross-validation (LOLO CV) procedure,
which was implemented to account for the spatial and
temporal dependence of the data.”® This approach aimed to
provide more realistic estimates of the prediction error.
However, we observed that the average results from all
LOLO CV evaluations for PM, 5 (R* = 0.55, MB = —39 ug/m’,
RMSE = 3.47 ug/m® and NMB = —4.65%) and MDAS-O, (R*
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Figure 4. Spatial distributions of yearly average prescribed burn specific MDA8-O; concentrations (ppb) during 2015—2020.

= 0.90, MB = —1.73 ppb, RMSE = 4.03 ppb, and NMB =
—4.38%) were nearly identical to those obtained from 10-fold
CV (Table S4). This observation diverges from findings in
other studies, which often report significant differences
between these two methods.”’ The unexpected similarity in
the results may be due to the specific characteristics of the data
set and data-fusion approach. It is important to note that the
LOLO CV entails a significant computational cost. In our
analysis, with around 100 monitoring locations, there were
essentially 100 folds in LOLO CV. This translates to a
computational burden roughlsy 10 times greater than that of a
standard 10-fold CV. Di et al.”” demonstrated that using spatial
or temporal folds can provide a more efficient estimate of the
prediction error in air pollution models due to spatial and
temporal dependencies in the data.

Limited observational data in smoke-impacted areas may
limit the accuracy of data-fused prescribed fire impact
estimates. Such a lack of observations can be alleviated, in
part, by using low-cost sensors; however, the performance of
such sensors is still questionable when applying them to detect
impacts from prescribed fires in high-concentration environ-
ments.”

3.3. Impacts of Prescribed Burns on Air Quality. The
spatial distributions of 2015—2020 annual mean PM,g and
MDAS-O; concentrations resulting from prescribed fires are
shown in Figures 3 and 4, respectively. Over 2015-2020,

prescribed burns contributed 0.94 + 1.45 ug/m® (mean +
standard deviation (SD), where SD is based on the variation of
impacts in different grid cells) (median (MD): 0.41 ug/m?) to
the daily average PM, [range: 0.0—14.3 ug/m?] across the
domain, which is, on average, around 14% of the ambient
PM, 5. The lowest annual average burn impacts were observed
in 2019: 0.80 + 129 ug/m® (MD: 0.36 ug/m®) and the
highest in 2017: 1.28 + 2.10 pg/m* (MD: 0.40 ug/m®) (Table
SS). The counties near the central western border of Georgia
with Alabama are highly impacted by prescribed fires (e.g,
Chattahoochee, Muscogee in Georgia, and Russell County in
Alabama), experiencing a contribution to daily average PM, g
of 1.60 + 3.20 ug/m? over 2015—2020. The highest prescribed
burn impacts were observed during the extensive burning
season. During this season, prescribed burns contribute an
average of 20% to total atmospheric PM, ¢ [average: 1.43 +
1.97 ug/m* MD: 0.67 ug/m*] (Figure 5).

Within Georgia, prescribed burns contributed 1.08 + 1.54
ug/m® to daily average PM, 5 (~17% of the ambient PM, ).
The annual mean contribution ranged from 0.93 + 1.20 ug/m*
in 2020 to 1.39 + 1.94 ug/m?® in 2017, or 14—19% of ambient
PM, concentration in Georgia. In the extensive burning
season, daily mean contribution ranged from 1.10 + 1.29 to
2.40 + 2.57 pg/m?, or 18—32% of total PM, 5 concentration
(Table S6). Prescribed burning contributed above 70% of
ambient PM, s in Georgia on the highest burned area days. For
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Figure 5. Spatial distributions of seasonal average prescribed burn specific PM, 5 (4g/m?®) (top row) and MDAS-O; concentrations (ppb) (bottom
row) during 2015—2020. January—April is the extensive burning season, May—September is the low-burning season, and October—December is the

cold season.

example, February 14 had the highest burn area in 2015 (29
910 acres) and consequently average PM, s was 9.36 ug/m?> or
~72% of ambient PM, 5 was due to prescribed fire on that day
(Figure S7). Prescribed burns have the potential to greatly
increase PM, s concentrations often surpassing the National
Ambient Air Quality Standard (NAAQS) (35 ug/m?) and
reaching above hazardous levels (>250 pg/m’) in some grid
cells. On 130 days during the study period, prescribed burns
contributed 10% or more of the daily air quality standard for
PM, (>3.5 ug/m®) to the average ambient PM,
concentration in Georgia.

As the prescribed burns are conducted under conditions of
lower temperature and higher humidity compared to weather
more conducive to wildfires, leading to lower NOx emissions,
less Oy is formed as compared to wildfires.® Prescribed fire was
responsible for 0.36 + 0.61 ppb (MD: 0.15 ppb) daily average
increase of MDA8-O; (range: 0—6.8 ppb) in the study domain,
which is around 0.8% [range: 0—12.6%] of ambient MDAS-O;.
The lowest annual average MDAS8-O; produced by prescribed
fire was 0.30 + 0.51 ppb (MD: 0.11 ppb) (0.8% of annual
ambient MDAS8-O;) in 2015, and the highest contribution was
0.52 + 0.87 ppb (MD: 0.17 ppb) (1.0% of annual ambient
MDAS-O;) in 2017. The counties near the central-southern
border of Georgia with Florida (e.g., Thomas, Grady, and Leon
County) are significantly affected by prescribed fires, with a
daily average contribution of 0.70 + 0.46 ppb to MDAS-O;. It
is crucial to note that areas with elevated exposure to

prescribed fire-related PM,; and MDAS-O; are distinct.
While high concentrations of smoke PM, 5 are observed near
the burn location, the formation of Oj takes time, allowing
emitted pollutants to stray from the source location in the
interim. During the extensive burning season, prescribed fire
contributed an average of 0.62 + 0.88 ppb (MD: 0.28 ppb) or
1.3% to ambient MDAS-O; (Figure ).

Specifically, within Georgia, prescribed burning contributes
an average of 0.37 + 0.73 ppb (MD: 0.12 ppb) [range: 0—8.10
ppb] to MDAS-O,, which is around 1.0% [range: 0—25.2%].
During the extensive burning season, contribution to MDAS-
O; was 0.67 = 1.06 ppb (MD: 0.26 ppb) or 1.8%. The highest
prescribed fire contributions to MDAS8-O; were observed on
the highest burned area days. For example, on February 14,
20185, prescribed burning contributed 3.4 ppb or 7.4% to
MDAB8-O; (Figure S8). Prescribed fire smoke events can
increase the MDAS8-Oj values to above 150 ppb in some grid
cells. During the study period, there are 270 days when
Georgia experienced significant prescribed fire contribution to
MDAS-O; (>1% of ambient MDAS-O; standard).

3.4. Impacts of Prescribed Fire on Mortality. The
premature mortality estimated for prescribed fire-related
exposure depends on several factors, including changes in air
quality, population, and mortality over time. The population in
our study domain was 30.6 million, and average population-
weighted exposures to prescribed fire PM,s and MDAS-O;
were 0.97 ug/m? and 0.36 ppb, respectively, over the domain.
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The highest population-weighted exposure occurred in 2017,
with average exposures to prescribed fire PM, g and MDAS-O;
values of 1.32 ug/m® and 0.52 ppb, respectively. In Georgia,
the average population-weighted prescribed fire PM,  was 1.13
ug/m* over 2015—2020.

The estimate of all-cause premature deaths attributed to
short-term prescribed fire PM, exposure was 2665 (95%
confidence interval (CI): 2249—3080) from 2015 to 2020.
Among all premature deaths, 26% were due to cardiovascular
causes, and 10% were related to respiratory causes. Addition-
ally, prescribed fire MDAS-O; is associated with 233 (95% CI:
148—317) all-cause premature deaths across the entire study
area, over 2015—2020. The highest number of all-cause
premature deaths associated with prescribed fire-related PM, g
and MDAS-O; exposures was for 2017, with 511 (95% CIL:
431-590) and 48 (95% CI: 31—65) premature deaths,
respectively. These higher excess mortality numbers can be
attributed to a larger acreage of land treated with prescribed
burning that year, which, in turn, was associated with higher
prescribed burn-related emissions. On average, there were a
total of 200 (95% CI: 169—231) all-cause premature deaths
(PM, - and MDAS8-Ojs-attributale deaths) per million acres
(~0.4 million ha) of prescribed burn across the study domain.

Within Georgia, the estimated total premature deaths
attributed to PM, s and MDAS8-O; exposures from prescribed
burns were 930 (95% CI: 785—1074) and 83 (95% CIL: 52—
112), respectively, during the same period. Notably, Georgia
accounted for 35% of the estimated prescribed fire-attributable
total mortality in the study domain. However, when
considering total deaths from all causes in Georgia during
the study period, the number of premature deaths attributable
to prescribed fire smoke exposure represented only ~0.2% of
the total mortality.”* The yearly premature deaths are reported
in Table S11.

For comparative analysis, we utilized the same CR-
coeflicient, along with state-specific baseline mortality data
from the GBD report and grided population data from GPW to
assess all-cause premature deaths. Our estimation resulted in a
total of 2915 (95% CI: 2459—3372) all-cause premature
deaths attributable to short-term prescribed burn PM,
exposure and 271 (95% CI: 171—367) to short-term
prescribed burn MDAS8-Oj; exposure, over 2015—2020 across
the entire study domain. Whereas, within Georgia, the total
estimated premature deaths attributed to prescribed fire-
related PM, ; and MDAS8-O; exposure were 1234 (95% CL:
1041—1426) and 99 (95% CI: 62—133), respectively, during
2015-2020. The instances of high premature all-cause deaths
are situated in regions with higher population density, distinct
from the areas with elevated concentrations of prescribed burn
smoke (Figure S10). These estimated values are higher than
county-level analysis, as county-specific cause-specific mortal-
ities differ from the state averages, and regridding the county-
level concentration data may underestimate the actual
exposures.

3.5. Uncertainty and the Knowledge Gap. This study is
unique in its combined use of the satellite observations for
prescribed fire detection, its data-fusion method, and linkage to
population exposures to gain new insights about prescribed fire
impacts on air quality and associated premature deaths. The
FINN product is developed based on satellite-detected thermal
anomalies from vegetation fires.>> Indeed, one of the main
disadvantages of all remote sensing thermal anomaly products
is that they do not detect most of the fires less than

approximately 100 ha and some understory fires, both of which
can be a significant source of emissions to the atmosphere.’*’
Moreover, the satellites measured a 10—20% larger burn area
compared to the actual burn area reported in ground-based
prescribed burning databases, suggesting that they also include
at least some wildfires.”* " The burn area can be calibrated
based on actual permit record data. However, burned areas
obtained from permit records can be inaccurate; of note, there
is ~15% difference between recorded burn areas and actual
burned areas.'” Other ground-based or complementary
methods, such as drone-based measurement, may be necessary
to ensure comprehensive prescribed burn area monitoring.
One limitation of the algorithm used to discern prescribed fires
from FINN is that if a wildfire was extinguishing in the same
day it was detected, it is considered to be a prescribed fire.
Therefore, some of the emissions calculated in this paper could
be due to wildfires.

The prescribed burn area in the domain remains relatively
constant interannually (2.2 + 0.29 million acres/year), but the
emissions are not necessarily proportional to the burned area.
The fuel type and density, amount of fuel consumed,
temperature, fuel moisture, and wind speed and direction are
also drivers in determining the emissions. For example, PM, g
and VOCs emissions per acre of prescribed burn were about
2.2 and 2.4%, respectively, higher in 2019 compared to 2015.
Most of the previous studies have considered prescribed fire
during the extensive burning season; however, there was
significant off-season exposure. In the cold season (October—
December), prescribed fire contributes to PM, s and MDAS-
0O, in the study domain, on average, 1.13 + 1.46 ug/m® (MD:
0.58 ug/m*) (16% of ambient PM, ;) and 0.35 + 0.47 ppb
(MD: 0.17 ppb) (0.8% of ambient MDAS8-O;), respectively.
The summertime burn ban reduces the formation of ground-
level O; by prohibiting certain open burning activities from 1st
May through 30th September in 54 counties out of 159
counties in Georgia.(’1 However, burning continues in the
surrounding states. In summer, prescribed fire contributes an
average of 0.59 + 0.50 ug/m* (MD: 0.42 ug/m?) to PM, 5 and
0.12 + 0.10 ppb (MD: 0.10 ppb) to MDAS8-O; in Georgia.
The prescribed burning in regions adjacent to the study
domain should be considered, as it may affect the air quality
within the domain and potentially influence the outcomes of
the study.

When smoke plumes from fires mix into urban areas, they
alter the local photochemical environment.’” As a result, urban
O, levels can be influenced by upwind O; production from
smoke as well as enhanced O; production within the urban
environment.”*** Liu et al. found an increase of 12—30 ppb in
MDAB8-Oj; during early spring prescribed burning in the urban
Southeastern US.®® Local or regional O; precursors from
wildland fires can be advected into marine environments,
which may then recirculate back into populated areas. Models
and observations indicate that O; can increase over water
bodies due to inhibited deposition, shallower boundary layers,
and ship emissions.””®” We found similar behavior of O; over
the coastal region of Georgia (Figure S11), where prescribed
burn O; reached above 15 %pb, although the impact was
depressed by marine halogens.*®

Studies have suggested that compositional differences in
wildland fire PM, 5 can be associated with higher health risks
than typical urban PM, " raising even more concern for
human health,"”~"" with strong evidence that links short-term
wildfire smoke exposures to increased all-cause mortality
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among older adults and infants.””~’* Recent epidemiological
studies reported the association between wildfire (sic) smoke
PM, s and mortality, using wildland fire PM, 5 exposure field at
coarse resolution (>10 X 10km?), which was generated
primarily using a satellite fire product and a chemical transport
model."””® Satellite fire products like the Global Fire
Emissions Database (GFED) and the Hazard Mapping System
(HMS) include all types of wildland fires and do not separate
wildfire, prescribed fire, or agricultural fires.”””® The coarse
resolution’” of the wildfire-PM, 5 concentration field, including
all types of fire emissions, may impact the association between
wildfire-PM, 5 and deaths in epidemiological studies.

Wildfires, being uncontrolled events, may produce PM,
with a more varied chemical composition, potentially
encompassing more harmful substances due to the diversity
of materials consumed in the fire compared to prescribed fire-
generated PM, ;.>***' However, there is a notable absence of
literature comparing the differential toxicity of PM,g from
wildfires and prescribed fires, and no epidemiological studies
have been conducted to evaluate the relationship between
mortality and exposure to PM, from prescribed fires.
Therefore, applying a CR-coefficient for wildfire smoke
exposure on prescribed fire smoke may under- or overestimate
the excess premature deaths. Future research should aim to
develop CR-coefficient specific to prescribed fire PM,
exposure to improve the accuracy of health impact assess-
ments. Additionally, the burden of all-cause premature
mortality attributed to short-term wildland smoke PM,
exposure was often estimated using all-source PM, s-related
CR-coefficients. For example, the USEPA used®” the all-source
PM, ;-related CR-coefficient from the Zanobetti and Schwartz
study to estimate premature deaths attributable to short-term
wildfire and prescribed fire PM, 5 exposure.*” Using the CR-
coeflicient reported by Zanobetti and Schwartz, we estimated
that the all-cause premature deaths attributable to short-term
prescribed fire PM, s exposure in 2017 were 335 (95% CI:
257—416) over the study domain. In contrast, using a wildfire-
specific CR-coefficient for PM, , our estimate was 646 (95%
Cl: 545—747) premature deaths, which is roughly twice as
high (Table S11). Additionally, the links between prescribed
fire PM, and MDAS8-O; and various morbidities, such as
asthma exacerbations and increased respiratory-related hospital
admissions,””** were not addressed in this study.

The CMAQ-simulated surface pollution concentrations are
highly influenced by the smoke plume rise or injection height
used in air quality models. Plume rise is widelgr recognized as
an area of uncertainty in smoke modeling.”> Traditionally,
many plume rise models relied on Briggs plume rise equations,
which were originally developed for industrial smokestacks.*’
However, several studies suggest that this approach may not be
appropriate for wildland fires®"** and could lead to about 20%
uncertainty in the final estimation of pollutant concentra-
tions.”” Further research efforts are necessary to improve
chemical properties of prescribed fire smoke, fuel consumption
and emission factors to predict the burn impacts more
precisely.”””!

4. POLICY IMPLICATIONS AND FUTURE WORK

Expanded prescribed fire activity in the US can be a valuable
strategy to mitigate the risks of higher smoke exposure levels
from wildfires. However, to ensure that prescribed burns do
not have a detrimental impact on air quality or public health, it
is essential to develop strategies that minimize adverse effects.

12351

The warming and drying climate, accumulation of fuels, and
the expansion of the wildland—urban interface raise concerns
about the health effects of wildland fire smoke on
residents.””””® The long-term emissions and air quality
impacts of periodic prescribed burning are not well-quantified,
and more research is needed in this area. Studies have shown
that carbon emissions per hectare from prescribed burns over
many decades are similar to or slightly higher than what would
have been emitted by wildfires over the same period. However,
prescribed burns tend to emit lower PM,s for a shorter
duration compared to large wildfires.”*”®

The overall wildland area to be treated by prescribed fire is
likely to increase in the future to reduce the area burned in
wildfires. This underscores the importance of eflicient
strategies for limiting exposure to prescribed fire smoke.”®™”*
At a minimum, the forecast and monitored air quality must be
communicated to sensitive populations in a timely fashion. To
facilitate future research, a centralized repository to store
prescribed fire information can be developed for better
accessibility of prescribed burn data. Such a repository would
include, but not be limited to, information on location, timing,
actual acres burned, fuel type and fuel loading information, and
any air quality monitoring data collected, and this can enhance
the overall effectiveness of the prescribed fire model and air
quality management. The trade-offs between the air quality
and health impacts of prescribed burning and wildfires are
unknown; they should be evaluated and considered in policy-
making together with the need for managing wildfires,
protecting communities, and maintaining healthy ecosystems.
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