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HIGHLIGHTS

e SVR is more accurate on daily PM,s,
particularly PM, 5 exceedances
predictions.

e Surface RH was the most important
meteorological factor for PMys
prediction.

e The impact of emissions on PM, s was
significant before 2010 but reduced
thereafter.

e ML models predict past better than
future; all the ML models are limited at
extremes.
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ABSTRACT

Machine learning methods are increasingly being used in the field of air quality research to investigate the
relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used
for both scientific investigation, and policy assessment and development. However, there is a lack of studies that
have compared the performance of different machine learning methods. To address this gap, this paper employed
various machine learning techniques, including decision tree, random forest (RF), support vector machine
(SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to
predict daily average PM, s levels and the number of days with PM; 5 exceedance in the South Coast Air Basin of
California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and
large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PMy 5
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levels and the SVM model gave the most accurate results for predicting the number of days with PMy5s
exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that
emissions have a greater impact on PMj 5 levels over time compared to meteorological factors, though meteo-
rology is responsible for daily variability. The most important meteorological factors were identified as surface
relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet
deposition. We conducted sensitivity tests on the model’s response to emissions and meteorological factors. The
predicted PMs 5 from RF and SVR showed large correlations with emissions at the early period (2000-2010).
However, the changes were minimal in more recent years (2011-2019), implying that there are biases in ma-
chine learning models, in which the models consistently predict the minimum PM; 5 levels at a baseline.

1. Introduction

Fine particulate matter (PMy5) is one of the criteria pollutants
regulated by the National Ambient Air Quality Standard (NAAQS) and
poses significant threat to human health and the climate (Dockery et al.,
1993; Gurgueira et al., 2002; Pinault et al., 2016; Pope et al., 2002;
Schwartz, 1994). Predicting PM; 5 levels is a complex task, as it can be
emitted directly from sources or formed in the atmosphere through
chemical reactions between precursor pollutants, making it challenging
to predict PMj 5 concentrations and attribute levels to specific sources or
processes.

Two methods commonly used to predict PMy 5 concentrations are
chemical transport models (CTMs) (e.g., the Community Multiscale Air
Quality (CMAQ) and GEOS-Chem models) and empirical methods (e.g.,
traditional regression models and machine learning methods). These
two methods have their own advantages and limitations. CTMs are
designed to capture complex atmospheric processes and chemical re-
actions using first principal relationships, following compounds from
their emission to ultimate fate. However, the dynamics of PMy s for-
mation are not fully understood, and there are uncertainties in the input
meteorological and emissions data (Jiang and Yoo, 2018; Rybarczyk and
Zalakeviciute, 2022; Vlachogianni et al., 2011; Xu et al.,, 2021).
Furthermore, CTM performance in predicting daily PM; 5 levels shows
both bias and variance and is also impeded by the significant informa-
tion and computational requirements, particularly for long-period
application. In contrast, machine learning methods, such as decision
tree (DT), random forest (RF), Gaussian process regression (GPR), sup-
port vector machine (SVM), support vector regression (SVR), neural
network (NN), and k-nearest neighbor (KNN), are computationally
faster and more easily constructed, but require a large amount of
training data to train, have low interpretability and do not provide
first-principle relationships between emissions and air quality (Bi et al.,
2022; Gao et al., 2022). Machine learning models are challenging to
represent with explicit mathematical equations compared to statistical
models, largely due to their complex structures and the numerous pa-
rameters they include. For example, the RF algorithm is composed of
multiple decision trees of varying depths, making it is hard to explain by
reviewing each tree’s structure. Also, the number of parameters in a
random forest can range from thousands to millions, depending on the
number of trees and the depth of each tree.

In this study, we focus on using machine learning models to predict
PMy 5 levels and compare the performance and computational re-
quirements for DT, RF, GPR, SVM, SVR, NN, and KNN methods, and
investigate how emissions and meteorology influence daily and annual
PM, 5 levels. Previous studies have shown that machine learning-based
models can accurately predict PMj 5 levels using emissions and meteo-
rological data (Chen et al., 2020; Gao et al., 2023a, 2023b; Gupta et al.,
2021; Kleine Deters et al., 2017; Kumar et al., 2020; Minh et al., 2021).
We use binary classification models to predict the number of PMs 5 ex-
ceedance days (defined as concentrations above 12 pg/m® for annual
average PMy s and above 35 pg/m> for 98th percentile daily average
PM, 5 based on NAAQS), which related to human health (e.g., respira-
tory and cardiovascular diseases, cancer and mortality rate). The pre-
dictive capabilities of these models can offer insights into the

spatial-temporal patterns in PMy 5 exceedance days and the variable
importance of these models can show a potentially effective way to
reduce PM, 5 concentrations to policymakers.

2. Methods and data

We applied various common machine learning techniques including
DT, RF, GPR, SVR, and NN to predict daily PMy 5 concentrations. In
addition, we used eight classification methods to predict the number of
PM, 5 exceedance days, namely perceptron, logistic regression, and
KNN, SVM, DT, RF, GPR, NN.

2.1. Methods

2.1.1. Decision tree and random forest

The DT model is a commonly used machine learning method for
classification and regression, which is capable of capturing non-linear
relationships between the dependent variable and independent in-
dicators (Breiman et al., 2017; Hastie et al., 2009; Quinlan, 2014). ADT
consists of three parts: a root node, leaf nodes, and branches. To build a
DT, the model considers all the features at the root node and selects the
split that yields the highest accuracy (least cost using the sum of the
difference between the observations and predictions for regression or
the Gini score for classification). The feature at the root node is the most
important feature of the predicting dependent variable. The data is then
split using the value of this feature, and the process is repeated recur-
sively on each subset until further splitting does not improve the model
or the predictions at each leaf node are identical. The DT model is easy to
build and visualize, and can provide feature importance through the
order of the nodes. Data preparation before building the DT is simple:
indicators do not need to be on the same scale using standardization and
feature selection is not required. The DT model can handle
multi-dimensional data and numerical and categorical features. How-
ever, DT can suffer from overfitting and lack of stability when the
number of indicators is large. This issue can be mitigated by adjusting
hyperparameters such as increasing the minimum amount of data in
each leaf node and reducing the maximum depth of the tree. Addition-
ally, pruning can be used to remove branches with low variable
importance. The main limitations of DT are instability and the potential
for suboptimal model selection due to the method used to choose the
root node feature.

A RF is a combination of multiple DTs (Tin Kam, 1995) that ad-
dresses some of the limitations of a single DT model. Unlike DT, the RF
model randomly selects the subsets from the training dataset to train
each tree and randomly selects features at each leaf node, reducing
variance and increasing model stability. The final prediction of the
random forest model is the average of all trees’ prediction in regression,
or the majority vote of all DTs is the final RF in classification. Hyper-
parameters such as the number of trees and number of features at each
leaf node can be tuned to improve the model performance of an RF
model. However, the tuning process may result in overfitting, so
cross-validation is necessary to identify the ‘optimal’ RF model. The RF
model generally provides more accurate and stable predictions than a
single DT and can automatically consider feature interactions. The main
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limitation of the RF model is increased computational requirements
compared to a single DT. The “rpart” and “randomForest” packages were
used in R program to build the DT and RF model (Liaw and Wiener,
2002; Loh, 2011).

2.1.2. Gaussian process regression

The GPR model is a nonparametric and kernel-based approach that
can be applied to both classification and regression problems (Zhang
et al., 2018). GPR utilized the Bayes rule to make predictions. One of the
key factors that impacts the GPR model’s performance is the choice of
kernel function (covariate function). There are various kernel functions
available for use in the GPR model, such as linear, radial basis functional
(RBF), white noise, exponentiated quadratic, rational quadratic, and
periodic kernels. An advantage of the GPR model is that it can be applied
even when there is no specific relationship defined between the response
variable and predictors. Moreover, the predictions tend to be smooth
and flexible if the kernel function is appropriately selected. Additionally,
the GPR model does not require a large amount of data for model
training. However, the choice of the kernel is critical for the model’s
performance, and the model may perform poorly with an incorrect
kernel. Furthermore, the running time of this model can be longer than
other complex machine learning models when applied to datasets of
similar sizes (Belyaev et al., 2014). We built the GPR model using the
GaussianProcessRegressor from the sklearn.gaussian_process library in
Python (Rasmussen and Williams, 2006).

2.1.3. Support vector machine and support vector regression

The SVM model is used for classification, while the SVR model is
used for regression. Both models are capable of handling nonlinear re-
lationships. SVM and SVR primarily work by categorizing data points
into distinct groups. In the case of SVM, this is achieved by finding an
optimal hyperplane, which can be thought of as a boundary line in two
dimensions or a plane in three dimensions that best separates the
different classes. For SVR, the model identifies a line or curve depending
on the dimension of data that best predicts the target values. This hy-
perplane is a high-dimensional plane with the furthest distance to the
closest data point in each class. A soft margin is utilized to avoid over-
fitting by finding the minimum value after adding a loss function to the
distance between the hyperplane and the data point. To address
nonlinear relationships, the kernels are introduced to map the features
to the high-dimensional data and make it possible to separate the
datasets into classes with a hyperplane. Kernels include linear and
nonlinear types, such as polynomial, Gaussian, hyperbolic tangent, RBF,
and sigmoid kernels. In this study, we used RBF. The RBF kernel was
chosen due to its flexibility in handling non-linearities and its capability
to approximate a wide variety of functions with fewer hyperparameters,
which is widely used. Two hyperparameters are tuned to enhance model
performance: cost and epsilon. Epsilon is a regularizer that defines the
magnitude of the margins, while the cost determines the number of data
points outside the margins. The SVM model is cost and memory efficient
and performs well with nonlinear relationships. It is ideal for small
datasets, compared to neural network and other complex machine
learning methods. The e1071 package was used with R program to build
the SVR and SVM models (Chang and Lin, 2011; Fan et al., 2005).

2.1.4. Perceptron and neural network

A perceptron is a type of supervised machine learning model used for
classification (Rosenblatt, 1958). A simple neural network model that is
capable of classifying input data into two categories, consisting of a
single-layer neural network with a linear binary classifier. The algorithm
behind the perceptron is straightforward: it computes the weighted sum
of the input data and their weights and applies an activation function to
it. The activation function introduces a nonlinear factor to the weighted
sum, which is otherwise a linear equation. The choice of activation
function is critical in the development of the perceptron model. There
are many types of activation functions to choose from, including linear,
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exponential, sign, sigmoid, hyperbolic tangent, logistic, and rectified
linear unit (ReLU).

Apart from the perceptron, other neural network methods include
feedforward, multiple layer perceptron, convolutional, RBF/recurrent,
sequence to sequence, and modular neural network. The primary dif-
ferences among these methods are the data flow (i.e., the sequence in
which data move through the neural network), the structure between
the input and output data (e.g., the number of the hidden layer and
recurrent layer, and the number of neurons in each layer), and the
choice of the activation function. The multiple-layer perceptron neural
network is the foundation of all neural network methods. It contains
multiple hidden layers between the input and output layers, with each
hidden layer having multiple perceptrons. One advantage of this model
is that it offers greater flexibility in terms of its structure, enabling re-
searchers to design different structures for solving different problems.
However, this model is complex and requires finding the optimal acti-
vation function and the number of layers. Depending on the number of
hidden layers, the running time of the model can be relatively long
compared to other methods. We built the NN model using the sklearn.
neural_network module in Python (He et al., 2015; Kingma and Ba,
2014).

2.1.5. k-nearest neighbors

The k-nearest neighbors (k-NN) method is a non-parametric, super-
vised machine learning algorithm used for classification (Cover and
Hart, 1967). Unlike other methods, it is a “lazy” learning algorithm that
does not train a model between the response variable and independent
features. Instead, it stores the data during the training process. The k-NN
algorithm classifies data by measuring the similarity between the input
data and the data from the training set in the relevant classes. This is
determined by the “distance” between them, which can be computed
using various methods such as Euclidean, Manhattan, Minkowski, and
Hamming distances (Dudoit et al., 2002; Jaskowiak et al., 2012). The
key parameter to consider when building the k-NN algorithm is the
value of k, which refers to the number of neighbors in a class with the
closest distance to the new data that can assign to that class. Generally, a
large k value is recommended for the classification problem, especially
when dealing with high variance data. However, different k values can
result in underfitting and overfitting, so a cross-validation test is
necessary to determine the optimal k value. Compared to other complex
machine learning algorithms, such as neural network and random forest,
the k-NN method is relatively simple and only requires consideration of
two hyperparameters during development: the method used to calculate
the distance and the choice of k value. However, it can be prone to
overfitting or underfitting depending on the k value and may require a
large memory to store the dataset. The class package was used with R
program to build the k-NN model (Ripley, 2007; Venables and Ripley,
2013).

2.1.6. Logistic regression

Logistic regression is a supervised machine learning model and can
be used to solve classification problems based on probability. Three
types of logistic regression are binomial, multinomial, and ordinal. The
sigmoid function is applied to the logistic regression model, and the
output is the probability, which is in the range of 0 and 1:

1
T l4e X

y (Equation 1)

This method is easier to build than other complex machine learning
methods and has a low computational cost. It is better for a linear
relationship between the response variable and independent indicators
(Cramer, 2002). The coefficient of each independent variable can be
used to evaluate the variable importance. This model has two main
limitations: one is that this model does not work well with nonlinear
relationships, and the other is that the model performance is generally
worse than other complex machine learning methods. We built the
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Logistic regression model using glm function in R program.
2.2. Data

Observed PMs 5 levels in the South Coast Air Basin (SoCAB) were
obtained from the California Air Resources Board (CARB) archives
(CARB, 2020b). Historical PM5 5 mass concentrations from 2000 to 2019
were used to train all the empirical models. The Rubidoux site was the
primary focus of this study due to its longer PM, 5 record and relatively
higher PM; 5 levels.

Surface maximum/average/minimum temperature, average wind
speed, wind direction, and average relative humidity (RH) data were
obtained from CARB and National Centers for Environmental Informa-
tion (NCEI) (CARB, 2020a; NCEI, 2020). The maximum and average
solar radiation (SR) were obtained from a composite of SR data acquired
from CARB, U.S. Environmental Pollution Agency (EPA) Air Quality
System, and the National Solar Radiation Database (NSRD). The
upper-level height, temperature, RH, wind speed, and wind direction at
500 mbars (mb) and 850 mb were obtained from National Oceanic and
Atmospheric Administration (NOAA). These factors are associated with
synoptic scale weather, and are the indicators of the expected local
temperature and precipitation. Large-scale climate indices were ob-
tained from the NOAA Climate Prediction Center (CPC, 2020). Local
meteorological conditions were related to large-scale climate patterns,
including temperature, rainfall, and wind speed, which have an effect on
the air pollutants formation.

Estimated emissions for 2000 to 2019 were calculated for nitrogen
oxides (NOy), sulfur dioxides (SO5), primary PM, 5, ammonia (NHs), and
volatile organic compounds (VOCs) emissions (CARB, 2022). In the
performance evaluation, we focus on daily PM; 5 rather than annual
predictions, as that is a more demanding application, although we
provide annual statistics.

2.3. Sensitivity test

We adjusted the key emissions and meteorological indicators
(excluding maximum temperature) by 20%, 50%, 80%, 120%, and
150% to assess their response to PMj 5 levels using RF and SVR, based on
the rank of variable importance. These indicators include daily average
relative humidity, wind speed, relative humidity at 850 mb, and emis-
sions of NHs, NOx, primary PMsys5, SO3, and VOC. Considering the
sensitivity of maximum temperature, we only increased it by 1, 2, and
3 °C and decreased it by 1 and 2 °C to test its impact.

3. Results
3.1. Model performance

We evaluated the model performance based on two sets of evaluation
metrics and several common metrics, including the coefficient of
determination (Rz), mean bias (MB), and root mean square error (RMSE)
for regression (SI Eqns. 1-3) and accuracy, precision, F1 score, and
probability of detection (POD) for classification (SI Eqns. 4-8). The
equations for these metrics are shown in supplementary material. We
trained all the machine learning models using the whole dataset in the
period from 2000 to 2019. To assess overfitting, we applied 10-fold
cross-validation, where the input data was shuffled and 90% was
randomly selected as the training dataset. The remaining 10% was used
for testing.

3.2. Comparison among regression models

To build the regression models for daily PM; 5 mass concentrations at
the Rubidoux site, we used two sets of independent indicators. The first
set (VAR1) was created by excluding strongly correlated independent
variables (Fig. S1) and using stepwise regression and F statistics to select
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significant indicators (Pope and Webster, 1972). The second set (VAR2)
included all available indicators (Table S1).

3.2.1. Decision tree

We employed the selected indicators from VAR1 and VAR2 to build
the DT model. After pruning, the model performance of these two
models was almost identical for the daily average PM; 5 levels, with an
R? value of 0.40, and an RMSE value of 19.00 pg/m? (Table S3). Both
models exhibited stability during the 10-fold cross-validation test, with
similar performance on the training and testing dataset. The R? value of
the testing dataset was around 0.03 lower than that of the training data,
and the RMSE value of the testing dataset was about 4.5% higher than
that of the training data (Table S4). This result indicated that the DT
automatically selected the important features. In addition, this model
performed well in predicting the annual average and 98th percentile
daily average PMy 5 levels with R? values of 0.87 and 0.83, and RMSE
values of 3.05 pg/m> and 20.10 pg/m?>, respectively (Table S5).

3.2.2. Random forest

Initially, we used VAR1 to construct the RF model. Following this, we
tuned the RF model through a grid search that involved two user-defined
hyperparameters aimed at improving model performance: the number
of trees was set to 500, and the number of predictors at each leaf node
was 4. As a result, the RF model exhibited an R? of 0.60, and the RMSE
value of 8.10 pg/m>. This model effectively explained the majority of
annual average and 98th percentile daily average PMy 5 levels (R? =
1.00, RMSE = 1.94 pg/m® and R? = 0.96, RMSE = 15.00 pg/m>)
(Table S5). Furthermore,10-fold cross-validation showed the model
performance of this RF model with the training and testing datasets were
similar, indicating the absence of overfitting.

Next, we included all the available features we had to the RF model
without considering the correlation between independent variables
(VAR2). After tuning this RF model, the model performance for the daily
average PM, s levels predictions improved. Specifically, the optimal
number of random indicators at each split was 8, and the number of trees
was 414. The R? value equaled 0.70, and the RMSE value was 7.44 g/
m? (Table S3). Moreover, the R? and RMSE values of the training and
testing dataset in the 10-fold validation test were almost the same using
the RF model (Table S4). While the R? value for the annual average
PM, 5 levels predictions using this RF were slightly worse than those
using the RF model built with the indicators after feature selection, but
RMSE value was slightly better (R = 0.99, and RMSE = 1.90 pg/m>).
The model performance for the 98th percentile daily average PMy s is
similar using these two models. The R? value of the RF model with VAR1
is slightly better than that using RF model with VAR2, but the RMSE
value is worse (R? = 0.95, RMSE = 14.10 pg/mS) (Table S5). Therefore,
the RF model includes more indicators suggesting a better model per-
formance for daily average PM; 5 predictions, but the RF model built
with the independent variables after feature selection works well with
annual average and 98th percentile daily average PM; 5 predictions.
However, PMj 5 predictions using both RF models were biased low.

3.2.3. Support vector regression

We developed two of SVR models, one with the VAR1 and the other
using all the available predictors (VAR2). The SVR model performances
were very similar using VAR1 before and after tuning (the default
hyperparameter settings: cost = 1 and epsilon = 0, and cost = 4 and
epsilon = 0.3 after tuning) (R? = 0.64 and RMSE = 7.59 pg/m3 (before
tuning); R? = 0.68 and RMSE = 7.23 pg/m3 (after tuning)), with little
indication of overfitting through the 10-fold validation. The SVR model
explains most of the annual average and 98th percentile daily average
PMS, 5 concentrations with R? values of 1.00 and 0.94, and RMSE values
of 1.13 pg/m® and 10.50 pg/m>, respectively (Table S5).

The SVR model with more independent variables showed better
model performance than the one with the indicators after feature se-
lection, especially after tuning this SVR model to find the best
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hyperparameter selection (cost = 2 and epsilon = 0.3; R = 0.81 and
RMSE = 5.55 pg/m3) (Table S3). The predicted annual average and 98th
percentile daily average PM, 5 concentrations using this SVR model also
had a better agreement with the observations (R2 = 1.00, RMSE = 0.80
pg/m> and R? = 0.97, RMSE = 6.17 pg/m>) (Table S5). Thus, the SVR
model with more indicators exhibited better model performance when
using the optimized value for hyperparameters.

3.2.4. Gaussian process regression

The GPR model uses different kernel functions to estimate covari-
ance between any pair of data points. We multiplied constant kernel and
radius basis function kernels to develop Gaussian process regression
model (Eqn. (2)) and tuned the hyperparameters (intensity value (r) and
variance (0)) in this study:

2
K(x1,X,) =17 exp ( - %) (Equation 2)

We conducted alO-fold cross-validation test to assess different
combinations of hyperparameters, and we selected r = 19 and ¢ = 2000
for both VAR1 and VAR2. The model trained by VAR2 had an R? of 0.73
and RMSE of 6.53 pg/m® for daily PMj 5 predictions (Table $3). The 10-
fold cross validation for testing data had R? = 0.68 and RMSE = 7.06 g/
m? (Table 1). The model trained by VAR1 has a lower R? value (0.59)
and a higher RMSE value (8.10 pg/m®) compared to the one built with
more indicators, in which the 10-fold cross validation for testing data
showed less overfitting (R? = 0.58 and RMSE = 8.22 pg/m®) (Table 1, 53
and S4).

Model performance of these two models was virtually the same for
annual PMj 5 predictions and very similar for the 98th percentile daily
PMS 5 predictions (Table S5). The R? was the same when predicting the
peak PM, 5 levels, but the RMSE value of the model with more features
was much lower than that of the model using the selected variables. We
mainly focused on the GPR model built with the variables after feature
selection because the one with all the variables may be overfitting.

3.2.5. Neural network

We varied the number of hidden layers from 2 to 5 and the number of
nodes in each hidden layer from 40 to 200 (with a step of 10) to tune
different neural network (NN) structures using a combination of
hyperparameters. For the gradient descent process, we used mean
squared error as the loss function, and an Adam (Kingma and Ba, 2014)
optimizer was utilized for NN training. After evaluating different
structures through cross-validation testing, we developed the final NN
models using VAR1 features and VAR2 features with 3 hidden layers and
10 neurons for each hidden layer. To avoid the gradient vanishing when
training the neural network, we included normalization layers after each
hidden layer. The model trained by all the available indicators (VAR2)
had an R? of 0.76 and RMSE of 6.11 pg/m>. The 10-fold cross-validation
for testing data had an R2 of 0.68 and RMSE of 7.07 pg/m>, indicating
little overfitting. The VAR1-based model performed slightly worse than
VAR2 (R? = 0.57 and RMSE = 8.24 pg/m?>), with little indication of
overfitting, which is expected since the feature selection is typically
conducted to mitigate overfitting. Additionally, the neural network
structure for VAR2 is more complex and has more parameters than the

Table 1

Summary of statistical results of the daily average PM,s predictions at the
Rubidoux site using different regression models with the testing dataset (10% of
the complete dataset).

Method R? RMSE (ug/m>)
Decision Tree 0.38 10.00

RF 0.64 7.56

SVR 0.78 5.68

GPR 0.68 7.07

NN 0.68 7.07
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model for VAR1 which can lead to overfitting.

The predicted annual average and peak PM; 5 concentrations using
the NN models fit observations well (Table S5). The two models (VAR1,
VAR?2) performed similarly, although the model with more indicators
had a higher R? and lower RMSE.

3.2.6. Variable importance

We used the univariate R? value between the daily average PMa 5
levels at Rubidoux and each indicator to assess the impact of each in-
dependent indicator on predicted PM; s levels, (Fig. 1). PM precursor
emissions, such as NOy, SO,, VOCs and NH3, had the most significant
importance on PMj; 5 levels at the Rubidoux site and had positive con-
tributions, followed by primary PM5 5 emissions. Among the meteoro-
logical factors, the average surface RH and average RH at 850 mb were
the most important indicators, followed by maximum temperature and
average wind speed. A high RH from 850 mb to 500 mb can trigger cloud
formation and precipitation, which can washout PM (Haby, 2022). The
positive correlation between surface RH and PMy 5 levels suggests that
the increased water content can enhance heterogeneous formation of
PMy 5, including increased ammonium nitrate formation and faster
oxidation of SO and NOy (Jiang et al., 2019; Sun et al., 2019). Besides
the above-mentioned variables, the impact of the remaining variables on
the PM; 5 formation is small. The wind direction at 500 mb and 850 mb
had little influence on PMj 5 levels, with an importance value close to 0.

3.3. Comparison among classification models

We followed the EPA guidelines for PM; 5 exceedances to train our
supervised learning models. We considered daily average exceedances
to be when the level of PMy 5 is 35 pg/m° or greater (Fig. 2). To increase
data availability for testing, we relaxed the threshold to 12 pg/m?® (the
annual standard) for exceedances. Using the daily PM, 5 standard for
machine learning classification may lead to limited model robustness
due to the small dataset size, potentially resulting in overfitting or poor
generalization to new data. While relaxing the threshold from the daily
to the annual standard is necessary to increase data availability, this
method might introduce biases or inaccuracies, especially in dis-
tinguishing between daily and annual exceedance levels in PMj 5
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Fig. 1. Univariate R? value for 23 features with daily average PM, 5 levels at
the Rubidoux site. The blue color shows the positive contribution, the red color
indicates the negative contribution, and the green color is the non-monotonic
relationship.
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Annual Average PM2.5 Predictions with Changes of
Average Relative Humidity
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Annual Average PM2.5 Predictions with Changes of
Average Wind Speed
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Fig. 2. The observed and counterfactual PM; s concentrations with the small changes to surface relative humidity, wind speed, VOC and NOx emissions using
random forest model. The counterfactual concentrations are computed by (observations-simulations) + predictions (to reduce the uncertainty).

measurements. We labeled PMss levels as O for non-exceedances
([PMy 5] < threshold) and 1 for exceedances ([PMy 5] > threshold). In
this study, the total number of predictions was 5465 with 3299
exceedances above 12 pg/m° and 489 exceedances above 35 pg/m>. We
combined the confusion matrices (which visualize the actual and pre-
dicted values) with the evaluation metrics described in Section 3.1 to
assess the models’ ability to predict PMs 5 exceedances to evaluate the
machine learning models’ classification performance.

3.3.1. Decision tree and random forest

We used the RF model developed above, optimizing the hyper-
parameters following the method presented in section 3.2.2. To check
for overfitting, we subjected the model with the optimized hyper-
parameters to a 10-fold cross-validation test. The number of predictors
chosen at each leaf node was 4 for with a threshold of 12 pg/m® and 8
with a threshold of 35 pg/m®. Also, we applied the decision tree model
developed in section 3.2.1.

3.3.2. Gaussian process classification

The Gaussian process classification used the same process as the GPR
while projecting the regression results from the real number domain
(-inf, inf) to the probability domain [0, 1]. We chose the same kernel and
hyperparameters used in GPR in section 3.2.4. The uncertainty of this
method is evaluated by 10-fold cross-validation.

3.3.3. Support vector machine

The primary factor impacting the SVM model’s performance is the
selection of kernels. There are four common kernels to be chosen from:
linear, polynomial, RBF and sigmoid. We developed SVM models with
all four kernels (linear, polynomial, sigmoid, and radial) and evaluated
their accuracy and precision (Table S2). The RBF kernel had the highest
accuracy and precision values, so we opted for the RBF kernel to build
the SVM model in this study. Also, we tuned the SVM model to achieve
the optimal cost value. We selected a cost value of 4 for the SVM model
when the threshold was 12 pg/m? and 1 when the threshold was 35 pg/
m®. Moreover, we applied min-max normalization to standardize all the
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feature values.

3.3.4. Perceptron and neural network

The perceptron is a type of one-layer neural network that comprises a
linear layer and an activation function. The predictions using the per-
ceptron can be used for binary classification by applying a threshold (for
instance, values above O can be classified as the first class, and those
below 0 as the other class). To prevent overfitting, a regularization term
in the loss function can be used as a penalty to reduce the weights of
unimportant features. In this study, we tuned different penalty methods
including the L1 and L2 norm of weights. Surprisingly, the models
without any penalty had the best performance on both training and
testing datasets. This can be explained by the perceptron’s simplicity,
which may not capture the non-linear relationships between input and
output even without penalties.

The neural network (NN) approach used the softmax function (a
normalized exponential function) to map results from the real number
domain (-inf, inf) to the probability domain (0, 1). Unlike regression
applications, we used mean square error as the loss function to train the
NN model for classification. The classifier utilized cross entropy as the
loss function, which measured the differences between predicted and
observed probability and trained the model to decrease the differences.
We built the NN model for classification according to the specifications
outlined in Table S7.

3.3.5. k-nearest neighbors

The model performance of k-NN is primarily influenced by the se-
lection of the number of nearest neighbors (k), which generally prefers
an odd number and should not exceed the square root of the number of
data points. As we have approximately 5500 observations, the largest k
value is around 73. We tested all the odd numbers between 1 and 73 and
assessed their stability using 10-fold cross-validation. After comparing
the accuracy and precision values, we chose k = 11 to build the k-NN
model for the threshold = 12 pg/m?, and k = 21 for the model with the
threshold = 35 pg/m°>. Additionally, we applied min-max normalization
to scale the values of each indicator.

3.3.6. Diagnostic results

We applied the confusion matrix to summarize the total number of
correct and incorrect predictions to assess the performance of the clas-
sification models. The subdiagonal of the confusion matrix represents
true positive and true negative, which shows the correct predictions for
PM, 5 exceedances and non-exceedances, while the main diagonal (false
negative and false positive) shows the incorrect predictions (Fig. S3
shows the annual average PM, 5 exceedances (levels larger than 12 pg/
m>) and Fig. S2 shows the daily average PM, 5 exceedances (levels larger
than 35 pg/m>), the SI Table 8 includes a comparison for predictions of
annual average exceedances). Similar to predicting annual average
concentration trends, the classification models also predicted daily and
annual average PM, 5 exceedances effectively (Table S6).

In this study, we made a total of 5465 daily predictions, with 3299
exceedances (larger than 12 pg/m®) and 489 exceedances (higher than
35 pg/m%). The SVM model has the highest accuracy for predicting the
annual average PM, 5 exceedances with the most correct predictions for
both exceedances (true positives) and non-exceedance predictions (true
negatives), and the least incorrect predictions (false positives and false
negatives), followed by the neural network, Gaussian process classifi-
cation, and random forest. Compared to the classification results using a
threshold of 12 pg/m?, the efficacy of these eight classification methods
reduces when the threshold is increase to 35 pg/m® (Fig. S2). This
decline in performance is characterized by most of the values in the
confusion matrices in the lower left quadrant (true negatives), and all
the methods having fewer predicted PMys5 exceedances than were
observed. This is partly due to not capturing very transient emission
events such as wildfires. The perceptron had the worst performance for
predicting the exceedances in that the number of correct predictions was
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the least and the most incorrect predictions, although it has the most
correct daily average exceedances predictions (which is 354 days).

We used multiple approaches (section 3.1 and Table 2, S8) in addi-
tion to the confusion matrix to evaluate the accuracy and precision of
our models. The precision value is used to determine whether the labels
of the predictions are correct, while the POD value assessed the model’s
ability to detect the exceedances and ranges from O to 1. A high POD
indicated that exceedances are correctly, but this value did not consider
false negatives in its calculation. Hence, a POD value of 1 may indicate
poor performance if the labels all data as exceedances when that may not
be the case. The POD value of the perceptron classifier was the lowest,
consistent with the result from the confusion matrix (Figs. S2 and S3),
which showed that this model’s performance was the worst among all
the machine learning models.

The F1 score is computed from the harmonic mean of the precision
and POD values, serving as a key criterion for comparing model per-
formance. In this study, we combined the POD, precision, accuracy, and
F1 score values to do the assessment in order to avoid bias. The SVM
model has an overall best performance among all the models (the
highest accuracy, the second highest precision, the third highest F1
score, and the 5th POD values), followed by Gaussian process classifi-
cation and logistic regression (which also has the highest accuracy, even
has a better F1 score and POD values, but a lower precision). The de-
cision tree, perceptron and k-NN method has a slightly worse perfor-
mance for predicting daily PM 5 exceedances (Table 2). We also built
these classification models at different sites in Southern California.
Although the performance of the SVM, RF, and Logistic models varies by
site, the accuracy and precision of most SVM models at various sites are
generally the highest. This is followed by the Logistic model and then the
Random Forest model, aligning with the performance of different clas-
sification models observed at Rubidoux.

3.4. Discussions

3.4.1. Performance of machine learning models for predicting the future
PM3 5

We applied the built machine learning models to predict PMys
concentrations with the observed meteorological data and projected
emissions in 2020 to further assess the predictive accuracy of each
machine learning model. R? values ranged between 0.08 (Decision Tree)
and 0.37 (GPR). In 2020, the Rubidoux site recorded some extreme
PM; 5 values, likely due to wildfires. After excluding data from those
particular days, the gaussian process regression model was the most
accurate in predicting future scenarios among all the models, followed
by random forest and support vector regression (Table 3 and Fig. S7).
However, the predictions using SVR are closer to the observations
compared to RF and GPR based on the slope and RMSE value (Table 3
and Fig. S7). This suggests machine learning models can predict his-
torical values well, but hard to predict the forecasted results accurately.
RF and SVR captured some of the complex interactions of factors
influencing PMy 5 concentrations and are better applied to predict PMy 5
levels. However, none of these models accurately predicted the extreme
values, suggesting a potential integration with a chemical transport

Table 2
Summary of evaluation matrices of the daily average PM, 5 exceedances at the
Rubidoux site using different classification models (The threshold is 35 pg/m®).

Model Accuracy Precision F1 Score POD FTP
Decision tree 0.89 0.42 0.44 0.45 0.55
K-NN 0.92 0.63 0.52 0.44 0.56
Gaussian process 0.94 0.76 0.65 0.57 0.43
Logistic 0.94 0.76 0.63 0.53 0.47
Neural network 0.92 0.60 0.59 0.58 0.42
Perceptron 0.91 0.52 0.52 0.51 0.49
Random forest 0.93 0.85 0.53 0.38 0.62
SVM 0.94 0.83 0.60 0.46 0.54
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Table 3
Summary of statistical results of the daily average PM, s predictions at the
Rubidoux site using different regression models in 2020.

Method Year 2020 Year 2020 (exclude extreme PM; 5
values)
R? RMSE (ug/m®)  R? RMSE (pg/m®)
Decision Tree ~ 0.008  8.47 0.27  5.07
RF 0.36 7.23 0.62 3.81
SVR 0.36 6.91 0.58 3.66
GPR 0.37 6.75 0.60 3.78
NN 0.32 7.06 0.52 4.19

model might be beneficial.

3.4.2. Performance of each machine learning models for sensitivity tests

We applied small changes to the key indicators to evaluate their
response to PMj 5 levels with RF and SVR, based on the rank of variable
importance. Surface RH and maximum temperature were found to
positively influence PMj 5 levels. A correlation was observed between
higher RH at 850 mb, stronger wind speed, and a decline in PMy 5
concentrations (Fig. 2, S3 and S4). Most emission variables, particularly
NH;3 and VOC emissions, were associated with a positively relationship
with PMy 5 levels. A higher NH3 and VOC emissions appear to increase
PM, 5 concentrations (Fig. 2 and S3). NOx emissions positively affected
PM, 5 levels in the early years, but from 2015 onwards, a 1.5 multiplier
for NOx emissions showed a negative impact on PMy 5 (Fig. 2). This
could be attributed to NO titration, which reduces ozone formation,
impacting the oxidative capacity and subsequently, PM; 5 formation.

There is a clearer divergence between various multipliers in 2000s
for VOC, NOx, and SO, emissions compared to later years, indicating the
sensitivity of PMy 5 concentrations to these emissions changes (Fig. 2
and S4). The RF model indicated a consistent influence of NH3 and PM> 5
emissions on PMy 5 levels, suggesting that even slight changes in these
two emissions could predictably affect PM 5 concentrations over time
(Fig. S4). However, the sensitivity of NH3 and PM5 5 using SVR showed
varying responses similar to other emission variables. There is a variance
in the response of each indicator to PMj 5 concentrations when using RF
and SVR (Fig. S6).

Meteorological factors’ sensitivity differences are more uniform and
less than those of emission variables (Fig. S6). This may be due to the
broader temporal resolution of the emissions and their significance. The
sensitivity differences for emission variables showed variations in the
early years but stabilized after 2010. This suggested that while both
models can capture most of PMj 5 concentrations, their sensitivities to
specific emission/meteorological variables differ. Such differences sug-
gest the importance of model selection based on the specific research
objectives, as the choice of model can influence the response of various
factors on PMj 5 concentrations. We may need to use the Decoupled
Direct Method (DDM) in the chemical transport model, which can effi-
ciently calculate the direct sensitivities of pollutant concentrations to
various input parameters during each model simulation step by
computing the first-order derivatives, to improve the precision of the
sensitivity analyses.

3.5. Limitations

There are several limitations in the development of the models in this
study. First, incorporating additional features such as number of
detected fire events near the monitor could potentially improve the
model’s performance. Second, optimizing all the hyperparameters of
each machine learning method can be a time-consuming and subjective
process, so we only considered the common hyperparameters. The
optimal machine learning method for predicting air pollutants may vary
depending on the specific pollutant being analyzed. Also, the size of the
dataset and the interaction terms can also affect the comparison between
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machine learning methods, as previous research has shown the rela-
tionship between the model performance and the size of the training
dataset is not always linear (Bailly et al., 2022). Finally, combining
machine learning models with chemical transport models could improve
the accuracy of predictions and the sensitivity test.

4. Conclusions

This study developed and compared the machine learning-based
models for predicting the PMy 5 levels and the number of PMy5 ex-
ceedance days at the Rubidoux site in the South Coast Air Basin of
California, using precursor emissions, meteorological factors, and
climate indices. The statistical results showed that the support vector
regression model, with all the available features and the Gaussian pro-
cess regression model, with the selected features after tuning the
hyperparameters worked best for the PMj 5 predictions (including daily
average, annual average, and the 98th percentile daily average PMy 5
levels), although the performance of all methods, except the decision
tree model, were relatively similar. The decision tree model had the
worst performance in capturing PM; 5 levels, although it is less complex
and computationally faster than other methods. The support vector
regression model, on the other hand, requires fewer computational re-
sources than other complex machine learning methods (e.g., the random
forest, and neural network models), with relatively short running time.
However, computational time could become more critical with larger
datasets. In summary, the support vector regression model had high
predictive accuracy and good computational efficiency. The variable
importance analysis showed that precursor emissions had a greater
impact on PM 5 levels over time than meteorology, though meteorology
caused large day-to-day variations. The support vector machine model
has the highest accuracy and precision for predicting the number of
PM; 5 exceedances days, followed by the Gaussian process classification
model, neural network, and random forest models.

This work supports the idea that advanced machine learning
methods can effectively capture daily and annual PMj 5 levels and
attribute such concentrations to emissions and meteorological factors
(including climate impacts) over time, and can be used to provide daily
predictions for health analyses and policy assessment and formulation,
including capturing the non-linear responses to further emissions re-
ductions and to assess how PMj; 5 will respond under different meteo-
rological regimes, including changing climate.
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