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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• SVR is more accurate on daily PM2.5, 
particularly PM2.5 exceedances 
predictions. 

• Surface RH was the most important 
meteorological factor for PM2.5 
prediction. 

• The impact of emissions on PM2.5 was 
significant before 2010 but reduced 
thereafter. 

• ML models predict past better than 
future; all the ML models are limited at 
extremes.  
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A B S T R A C T   

Machine learning methods are increasingly being used in the field of air quality research to investigate the 
relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used 
for both scientific investigation, and policy assessment and development. However, there is a lack of studies that 
have compared the performance of different machine learning methods. To address this gap, this paper employed 
various machine learning techniques, including decision tree, random forest (RF), support vector machine 
(SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to 
predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of 
California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and 
large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 

* Corresponding author. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. 
E-mail address: zgao71@gatech.edu (Z. Gao).  

Contents lists available at ScienceDirect 

Atmospheric Environment 

journal homepage: www.elsevier.com/locate/atmosenv 

https://doi.org/10.1016/j.atmosenv.2024.120396 
Received 26 October 2023; Received in revised form 3 February 2024; Accepted 6 February 2024   

mailto:zgao71@gatech.edu
www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2024.120396
https://doi.org/10.1016/j.atmosenv.2024.120396
https://doi.org/10.1016/j.atmosenv.2024.120396
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosenv.2024.120396&domain=pdf


Atmospheric Environment 323 (2024) 120396

2

levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 
exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that 
emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteo
rology is responsible for daily variability. The most important meteorological factors were identified as surface 
relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet 
deposition. We conducted sensitivity tests on the model’s response to emissions and meteorological factors. The 
predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). 
However, the changes were minimal in more recent years (2011–2019), implying that there are biases in ma
chine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.   

1. Introduction 

Fine particulate matter (PM2.5) is one of the criteria pollutants 
regulated by the National Ambient Air Quality Standard (NAAQS) and 
poses significant threat to human health and the climate (Dockery et al., 
1993; Gurgueira et al., 2002; Pinault et al., 2016; Pope et al., 2002; 
Schwartz, 1994). Predicting PM2.5 levels is a complex task, as it can be 
emitted directly from sources or formed in the atmosphere through 
chemical reactions between precursor pollutants, making it challenging 
to predict PM2.5 concentrations and attribute levels to specific sources or 
processes. 

Two methods commonly used to predict PM2.5 concentrations are 
chemical transport models (CTMs) (e.g., the Community Multiscale Air 
Quality (CMAQ) and GEOS-Chem models) and empirical methods (e.g., 
traditional regression models and machine learning methods). These 
two methods have their own advantages and limitations. CTMs are 
designed to capture complex atmospheric processes and chemical re
actions using first principal relationships, following compounds from 
their emission to ultimate fate. However, the dynamics of PM2.5 for
mation are not fully understood, and there are uncertainties in the input 
meteorological and emissions data (Jiang and Yoo, 2018; Rybarczyk and 
Zalakeviciute, 2022; Vlachogianni et al., 2011; Xu et al., 2021). 
Furthermore, CTM performance in predicting daily PM2.5 levels shows 
both bias and variance and is also impeded by the significant informa
tion and computational requirements, particularly for long-period 
application. In contrast, machine learning methods, such as decision 
tree (DT), random forest (RF), Gaussian process regression (GPR), sup
port vector machine (SVM), support vector regression (SVR), neural 
network (NN), and k-nearest neighbor (KNN), are computationally 
faster and more easily constructed, but require a large amount of 
training data to train, have low interpretability and do not provide 
first-principle relationships between emissions and air quality (Bi et al., 
2022; Gao et al., 2022). Machine learning models are challenging to 
represent with explicit mathematical equations compared to statistical 
models, largely due to their complex structures and the numerous pa
rameters they include. For example, the RF algorithm is composed of 
multiple decision trees of varying depths, making it is hard to explain by 
reviewing each tree’s structure. Also, the number of parameters in a 
random forest can range from thousands to millions, depending on the 
number of trees and the depth of each tree. 

In this study, we focus on using machine learning models to predict 
PM2.5 levels and compare the performance and computational re
quirements for DT, RF, GPR, SVM, SVR, NN, and KNN methods, and 
investigate how emissions and meteorology influence daily and annual 
PM2.5 levels. Previous studies have shown that machine learning-based 
models can accurately predict PM2.5 levels using emissions and meteo
rological data (Chen et al., 2020; Gao et al., 2023a, 2023b; Gupta et al., 
2021; Kleine Deters et al., 2017; Kumar et al., 2020; Minh et al., 2021). 
We use binary classification models to predict the number of PM2.5 ex
ceedance days (defined as concentrations above 12 μg/m3 for annual 
average PM2.5 and above 35 μg/m3 for 98th percentile daily average 
PM2.5 based on NAAQS), which related to human health (e.g., respira
tory and cardiovascular diseases, cancer and mortality rate). The pre
dictive capabilities of these models can offer insights into the 

spatial-temporal patterns in PM2.5 exceedance days and the variable 
importance of these models can show a potentially effective way to 
reduce PM2.5 concentrations to policymakers. 

2. Methods and data 

We applied various common machine learning techniques including 
DT, RF, GPR, SVR, and NN to predict daily PM2.5 concentrations. In 
addition, we used eight classification methods to predict the number of 
PM2.5 exceedance days, namely perceptron, logistic regression, and 
KNN, SVM, DT, RF, GPR, NN. 

2.1. Methods 

2.1.1. Decision tree and random forest 
The DT model is a commonly used machine learning method for 

classification and regression, which is capable of capturing non-linear 
relationships between the dependent variable and independent in
dicators (Breiman et al., 2017; Hastie et al., 2009; Quinlan, 2014). A DT 
consists of three parts: a root node, leaf nodes, and branches. To build a 
DT, the model considers all the features at the root node and selects the 
split that yields the highest accuracy (least cost using the sum of the 
difference between the observations and predictions for regression or 
the Gini score for classification). The feature at the root node is the most 
important feature of the predicting dependent variable. The data is then 
split using the value of this feature, and the process is repeated recur
sively on each subset until further splitting does not improve the model 
or the predictions at each leaf node are identical. The DT model is easy to 
build and visualize, and can provide feature importance through the 
order of the nodes. Data preparation before building the DT is simple: 
indicators do not need to be on the same scale using standardization and 
feature selection is not required. The DT model can handle 
multi-dimensional data and numerical and categorical features. How
ever, DT can suffer from overfitting and lack of stability when the 
number of indicators is large. This issue can be mitigated by adjusting 
hyperparameters such as increasing the minimum amount of data in 
each leaf node and reducing the maximum depth of the tree. Addition
ally, pruning can be used to remove branches with low variable 
importance. The main limitations of DT are instability and the potential 
for suboptimal model selection due to the method used to choose the 
root node feature. 

A RF is a combination of multiple DTs (Tin Kam, 1995) that ad
dresses some of the limitations of a single DT model. Unlike DT, the RF 
model randomly selects the subsets from the training dataset to train 
each tree and randomly selects features at each leaf node, reducing 
variance and increasing model stability. The final prediction of the 
random forest model is the average of all trees’ prediction in regression, 
or the majority vote of all DTs is the final RF in classification. Hyper
parameters such as the number of trees and number of features at each 
leaf node can be tuned to improve the model performance of an RF 
model. However, the tuning process may result in overfitting, so 
cross-validation is necessary to identify the ‘optimal’ RF model. The RF 
model generally provides more accurate and stable predictions than a 
single DT and can automatically consider feature interactions. The main 
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limitation of the RF model is increased computational requirements 
compared to a single DT. The “rpart” and “randomForest” packages were 
used in R program to build the DT and RF model (Liaw and Wiener, 
2002; Loh, 2011). 

2.1.2. Gaussian process regression 
The GPR model is a nonparametric and kernel-based approach that 

can be applied to both classification and regression problems (Zhang 
et al., 2018). GPR utilized the Bayes rule to make predictions. One of the 
key factors that impacts the GPR model’s performance is the choice of 
kernel function (covariate function). There are various kernel functions 
available for use in the GPR model, such as linear, radial basis functional 
(RBF), white noise, exponentiated quadratic, rational quadratic, and 
periodic kernels. An advantage of the GPR model is that it can be applied 
even when there is no specific relationship defined between the response 
variable and predictors. Moreover, the predictions tend to be smooth 
and flexible if the kernel function is appropriately selected. Additionally, 
the GPR model does not require a large amount of data for model 
training. However, the choice of the kernel is critical for the model’s 
performance, and the model may perform poorly with an incorrect 
kernel. Furthermore, the running time of this model can be longer than 
other complex machine learning models when applied to datasets of 
similar sizes (Belyaev et al., 2014). We built the GPR model using the 
GaussianProcessRegressor from the sklearn.gaussian_process library in 
Python (Rasmussen and Williams, 2006). 

2.1.3. Support vector machine and support vector regression 
The SVM model is used for classification, while the SVR model is 

used for regression. Both models are capable of handling nonlinear re
lationships. SVM and SVR primarily work by categorizing data points 
into distinct groups. In the case of SVM, this is achieved by finding an 
optimal hyperplane, which can be thought of as a boundary line in two 
dimensions or a plane in three dimensions that best separates the 
different classes. For SVR, the model identifies a line or curve depending 
on the dimension of data that best predicts the target values. This hy
perplane is a high-dimensional plane with the furthest distance to the 
closest data point in each class. A soft margin is utilized to avoid over
fitting by finding the minimum value after adding a loss function to the 
distance between the hyperplane and the data point. To address 
nonlinear relationships, the kernels are introduced to map the features 
to the high-dimensional data and make it possible to separate the 
datasets into classes with a hyperplane. Kernels include linear and 
nonlinear types, such as polynomial, Gaussian, hyperbolic tangent, RBF, 
and sigmoid kernels. In this study, we used RBF. The RBF kernel was 
chosen due to its flexibility in handling non-linearities and its capability 
to approximate a wide variety of functions with fewer hyperparameters, 
which is widely used. Two hyperparameters are tuned to enhance model 
performance: cost and epsilon. Epsilon is a regularizer that defines the 
magnitude of the margins, while the cost determines the number of data 
points outside the margins. The SVM model is cost and memory efficient 
and performs well with nonlinear relationships. It is ideal for small 
datasets, compared to neural network and other complex machine 
learning methods. The e1071 package was used with R program to build 
the SVR and SVM models (Chang and Lin, 2011; Fan et al., 2005). 

2.1.4. Perceptron and neural network 
A perceptron is a type of supervised machine learning model used for 

classification (Rosenblatt, 1958). A simple neural network model that is 
capable of classifying input data into two categories, consisting of a 
single-layer neural network with a linear binary classifier. The algorithm 
behind the perceptron is straightforward: it computes the weighted sum 
of the input data and their weights and applies an activation function to 
it. The activation function introduces a nonlinear factor to the weighted 
sum, which is otherwise a linear equation. The choice of activation 
function is critical in the development of the perceptron model. There 
are many types of activation functions to choose from, including linear, 

exponential, sign, sigmoid, hyperbolic tangent, logistic, and rectified 
linear unit (ReLU). 

Apart from the perceptron, other neural network methods include 
feedforward, multiple layer perceptron, convolutional, RBF/recurrent, 
sequence to sequence, and modular neural network. The primary dif
ferences among these methods are the data flow (i.e., the sequence in 
which data move through the neural network), the structure between 
the input and output data (e.g., the number of the hidden layer and 
recurrent layer, and the number of neurons in each layer), and the 
choice of the activation function. The multiple-layer perceptron neural 
network is the foundation of all neural network methods. It contains 
multiple hidden layers between the input and output layers, with each 
hidden layer having multiple perceptrons. One advantage of this model 
is that it offers greater flexibility in terms of its structure, enabling re
searchers to design different structures for solving different problems. 
However, this model is complex and requires finding the optimal acti
vation function and the number of layers. Depending on the number of 
hidden layers, the running time of the model can be relatively long 
compared to other methods. We built the NN model using the sklearn. 
neural_network module in Python (He et al., 2015; Kingma and Ba, 
2014). 

2.1.5. k-nearest neighbors 
The k-nearest neighbors (k-NN) method is a non-parametric, super

vised machine learning algorithm used for classification (Cover and 
Hart, 1967). Unlike other methods, it is a “lazy” learning algorithm that 
does not train a model between the response variable and independent 
features. Instead, it stores the data during the training process. The k-NN 
algorithm classifies data by measuring the similarity between the input 
data and the data from the training set in the relevant classes. This is 
determined by the “distance” between them, which can be computed 
using various methods such as Euclidean, Manhattan, Minkowski, and 
Hamming distances (Dudoit et al., 2002; Jaskowiak et al., 2012). The 
key parameter to consider when building the k-NN algorithm is the 
value of k, which refers to the number of neighbors in a class with the 
closest distance to the new data that can assign to that class. Generally, a 
large k value is recommended for the classification problem, especially 
when dealing with high variance data. However, different k values can 
result in underfitting and overfitting, so a cross-validation test is 
necessary to determine the optimal k value. Compared to other complex 
machine learning algorithms, such as neural network and random forest, 
the k-NN method is relatively simple and only requires consideration of 
two hyperparameters during development: the method used to calculate 
the distance and the choice of k value. However, it can be prone to 
overfitting or underfitting depending on the k value and may require a 
large memory to store the dataset. The class package was used with R 
program to build the k-NN model (Ripley, 2007; Venables and Ripley, 
2013). 

2.1.6. Logistic regression 
Logistic regression is a supervised machine learning model and can 

be used to solve classification problems based on probability. Three 
types of logistic regression are binomial, multinomial, and ordinal. The 
sigmoid function is applied to the logistic regression model, and the 
output is the probability, which is in the range of 0 and 1: 

y =
1

1 + e− x
(Equation 1) 

This method is easier to build than other complex machine learning 
methods and has a low computational cost. It is better for a linear 
relationship between the response variable and independent indicators 
(Cramer, 2002). The coefficient of each independent variable can be 
used to evaluate the variable importance. This model has two main 
limitations: one is that this model does not work well with nonlinear 
relationships, and the other is that the model performance is generally 
worse than other complex machine learning methods. We built the 
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Logistic regression model using glm function in R program. 

2.2. Data 

Observed PM2.5 levels in the South Coast Air Basin (SoCAB) were 
obtained from the California Air Resources Board (CARB) archives 
(CARB, 2020b). Historical PM2.5 mass concentrations from 2000 to 2019 
were used to train all the empirical models. The Rubidoux site was the 
primary focus of this study due to its longer PM2.5 record and relatively 
higher PM2.5 levels. 

Surface maximum/average/minimum temperature, average wind 
speed, wind direction, and average relative humidity (RH) data were 
obtained from CARB and National Centers for Environmental Informa
tion (NCEI) (CARB, 2020a; NCEI, 2020). The maximum and average 
solar radiation (SR) were obtained from a composite of SR data acquired 
from CARB, U.S. Environmental Pollution Agency (EPA) Air Quality 
System, and the National Solar Radiation Database (NSRD). The 
upper-level height, temperature, RH, wind speed, and wind direction at 
500 mbars (mb) and 850 mb were obtained from National Oceanic and 
Atmospheric Administration (NOAA). These factors are associated with 
synoptic scale weather, and are the indicators of the expected local 
temperature and precipitation. Large-scale climate indices were ob
tained from the NOAA Climate Prediction Center (CPC, 2020). Local 
meteorological conditions were related to large-scale climate patterns, 
including temperature, rainfall, and wind speed, which have an effect on 
the air pollutants formation. 

Estimated emissions for 2000 to 2019 were calculated for nitrogen 
oxides (NOx), sulfur dioxides (SO2), primary PM2.5, ammonia (NH3), and 
volatile organic compounds (VOCs) emissions (CARB, 2022). In the 
performance evaluation, we focus on daily PM2.5 rather than annual 
predictions, as that is a more demanding application, although we 
provide annual statistics. 

2.3. Sensitivity test 

We adjusted the key emissions and meteorological indicators 
(excluding maximum temperature) by 20%, 50%, 80%, 120%, and 
150% to assess their response to PM2.5 levels using RF and SVR, based on 
the rank of variable importance. These indicators include daily average 
relative humidity, wind speed, relative humidity at 850 mb, and emis
sions of NH3, NOx, primary PM2.5, SO2, and VOC. Considering the 
sensitivity of maximum temperature, we only increased it by 1, 2, and 
3 ◦C and decreased it by 1 and 2 ◦C to test its impact. 

3. Results 

3.1. Model performance 

We evaluated the model performance based on two sets of evaluation 
metrics and several common metrics, including the coefficient of 
determination (R2), mean bias (MB), and root mean square error (RMSE) 
for regression (SI Eqns. 1-3) and accuracy, precision, F1 score, and 
probability of detection (POD) for classification (SI Eqns. 4-8). The 
equations for these metrics are shown in supplementary material. We 
trained all the machine learning models using the whole dataset in the 
period from 2000 to 2019. To assess overfitting, we applied 10-fold 
cross-validation, where the input data was shuffled and 90% was 
randomly selected as the training dataset. The remaining 10% was used 
for testing. 

3.2. Comparison among regression models 

To build the regression models for daily PM2.5 mass concentrations at 
the Rubidoux site, we used two sets of independent indicators. The first 
set (VAR1) was created by excluding strongly correlated independent 
variables (Fig. S1) and using stepwise regression and F statistics to select 

significant indicators (Pope and Webster, 1972). The second set (VAR2) 
included all available indicators (Table S1). 

3.2.1. Decision tree 
We employed the selected indicators from VAR1 and VAR2 to build 

the DT model. After pruning, the model performance of these two 
models was almost identical for the daily average PM2.5 levels, with an 
R2 value of 0.40, and an RMSE value of 19.00 μg/m3 (Table S3). Both 
models exhibited stability during the 10-fold cross-validation test, with 
similar performance on the training and testing dataset. The R2 value of 
the testing dataset was around 0.03 lower than that of the training data, 
and the RMSE value of the testing dataset was about 4.5% higher than 
that of the training data (Table S4). This result indicated that the DT 
automatically selected the important features. In addition, this model 
performed well in predicting the annual average and 98th percentile 
daily average PM2.5 levels with R2 values of 0.87 and 0.83, and RMSE 
values of 3.05 μg/m3 and 20.10 μg/m3, respectively (Table S5). 

3.2.2. Random forest 
Initially, we used VAR1 to construct the RF model. Following this, we 

tuned the RF model through a grid search that involved two user-defined 
hyperparameters aimed at improving model performance: the number 
of trees was set to 500, and the number of predictors at each leaf node 
was 4. As a result, the RF model exhibited an R2 of 0.60, and the RMSE 
value of 8.10 μg/m3. This model effectively explained the majority of 
annual average and 98th percentile daily average PM2.5 levels (R2 =

1.00, RMSE = 1.94 μg/m3 and R2 = 0.96, RMSE = 15.00 μg/m3) 
(Table S5). Furthermore,10-fold cross-validation showed the model 
performance of this RF model with the training and testing datasets were 
similar, indicating the absence of overfitting. 

Next, we included all the available features we had to the RF model 
without considering the correlation between independent variables 
(VAR2). After tuning this RF model, the model performance for the daily 
average PM2.5 levels predictions improved. Specifically, the optimal 
number of random indicators at each split was 8, and the number of trees 
was 414. The R2 value equaled 0.70, and the RMSE value was 7.44 μg/ 
m3 (Table S3). Moreover, the R2 and RMSE values of the training and 
testing dataset in the 10-fold validation test were almost the same using 
the RF model (Table S4). While the R2 value for the annual average 
PM2.5 levels predictions using this RF were slightly worse than those 
using the RF model built with the indicators after feature selection, but 
RMSE value was slightly better (R2 = 0.99, and RMSE = 1.90 μg/m3). 
The model performance for the 98th percentile daily average PM2.5 is 
similar using these two models. The R2 value of the RF model with VAR1 
is slightly better than that using RF model with VAR2, but the RMSE 
value is worse (R2 = 0.95, RMSE = 14.10 μg/m3) (Table S5). Therefore, 
the RF model includes more indicators suggesting a better model per
formance for daily average PM2.5 predictions, but the RF model built 
with the independent variables after feature selection works well with 
annual average and 98th percentile daily average PM2.5 predictions. 
However, PM2.5 predictions using both RF models were biased low. 

3.2.3. Support vector regression 
We developed two of SVR models, one with the VAR1 and the other 

using all the available predictors (VAR2). The SVR model performances 
were very similar using VAR1 before and after tuning (the default 
hyperparameter settings: cost = 1 and epsilon = 0, and cost = 4 and 
epsilon = 0.3 after tuning) (R2 = 0.64 and RMSE = 7.59 μg/m3 (before 
tuning); R2 = 0.68 and RMSE = 7.23 μg/m3 (after tuning)), with little 
indication of overfitting through the 10-fold validation. The SVR model 
explains most of the annual average and 98th percentile daily average 
PM2.5 concentrations with R2 values of 1.00 and 0.94, and RMSE values 
of 1.13 μg/m3 and 10.50 μg/m3, respectively (Table S5). 

The SVR model with more independent variables showed better 
model performance than the one with the indicators after feature se
lection, especially after tuning this SVR model to find the best 
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hyperparameter selection (cost = 2 and epsilon = 0.3; R2 = 0.81 and 
RMSE = 5.55 μg/m3) (Table S3). The predicted annual average and 98th 
percentile daily average PM2.5 concentrations using this SVR model also 
had a better agreement with the observations (R2 = 1.00, RMSE = 0.80 
μg/m3 and R2 = 0.97, RMSE = 6.17 μg/m3) (Table S5). Thus, the SVR 
model with more indicators exhibited better model performance when 
using the optimized value for hyperparameters. 

3.2.4. Gaussian process regression 
The GPR model uses different kernel functions to estimate covari

ance between any pair of data points. We multiplied constant kernel and 
radius basis function kernels to develop Gaussian process regression 
model (Eqn. (2)) and tuned the hyperparameters (intensity value (r) and 
variance (σ)) in this study: 

K(x1, x2) = r2 exp
(

−
‖x1 − x2‖

2

2σ2

)

(Equation 2) 

We conducted a10-fold cross-validation test to assess different 
combinations of hyperparameters, and we selected r = 19 and σ = 2000 
for both VAR1 and VAR2. The model trained by VAR2 had an R2 of 0.73 
and RMSE of 6.53 μg/m3 for daily PM2.5 predictions (Table S3). The 10- 
fold cross validation for testing data had R2 = 0.68 and RMSE = 7.06 μg/ 
m3 (Table 1). The model trained by VAR1 has a lower R2 value (0.59) 
and a higher RMSE value (8.10 μg/m3) compared to the one built with 
more indicators, in which the 10-fold cross validation for testing data 
showed less overfitting (R2 = 0.58 and RMSE = 8.22 μg/m3) (Table 1, S3 
and S4). 

Model performance of these two models was virtually the same for 
annual PM2.5 predictions and very similar for the 98th percentile daily 
PM2.5 predictions (Table S5). The R2 was the same when predicting the 
peak PM2.5 levels, but the RMSE value of the model with more features 
was much lower than that of the model using the selected variables. We 
mainly focused on the GPR model built with the variables after feature 
selection because the one with all the variables may be overfitting. 

3.2.5. Neural network 
We varied the number of hidden layers from 2 to 5 and the number of 

nodes in each hidden layer from 40 to 200 (with a step of 10) to tune 
different neural network (NN) structures using a combination of 
hyperparameters. For the gradient descent process, we used mean 
squared error as the loss function, and an Adam (Kingma and Ba, 2014) 
optimizer was utilized for NN training. After evaluating different 
structures through cross-validation testing, we developed the final NN 
models using VAR1 features and VAR2 features with 3 hidden layers and 
10 neurons for each hidden layer. To avoid the gradient vanishing when 
training the neural network, we included normalization layers after each 
hidden layer. The model trained by all the available indicators (VAR2) 
had an R2 of 0.76 and RMSE of 6.11 μg/m3. The 10-fold cross-validation 
for testing data had an R2 of 0.68 and RMSE of 7.07 μg/m3, indicating 
little overfitting. The VAR1-based model performed slightly worse than 
VAR2 (R2 = 0.57 and RMSE = 8.24 μg/m3), with little indication of 
overfitting, which is expected since the feature selection is typically 
conducted to mitigate overfitting. Additionally, the neural network 
structure for VAR2 is more complex and has more parameters than the 

model for VAR1 which can lead to overfitting. 
The predicted annual average and peak PM2.5 concentrations using 

the NN models fit observations well (Table S5). The two models (VAR1, 
VAR2) performed similarly, although the model with more indicators 
had a higher R2 and lower RMSE. 

3.2.6. Variable importance 
We used the univariate R2 value between the daily average PM2.5 

levels at Rubidoux and each indicator to assess the impact of each in
dependent indicator on predicted PM2.5 levels, (Fig. 1). PM precursor 
emissions, such as NOx, SO2, VOCs and NH3, had the most significant 
importance on PM2.5 levels at the Rubidoux site and had positive con
tributions, followed by primary PM2.5 emissions. Among the meteoro
logical factors, the average surface RH and average RH at 850 mb were 
the most important indicators, followed by maximum temperature and 
average wind speed. A high RH from 850 mb to 500 mb can trigger cloud 
formation and precipitation, which can washout PM (Haby, 2022). The 
positive correlation between surface RH and PM2.5 levels suggests that 
the increased water content can enhance heterogeneous formation of 
PM2.5, including increased ammonium nitrate formation and faster 
oxidation of SO2 and NOx (Jiang et al., 2019; Sun et al., 2019). Besides 
the above-mentioned variables, the impact of the remaining variables on 
the PM2.5 formation is small. The wind direction at 500 mb and 850 mb 
had little influence on PM2.5 levels, with an importance value close to 0. 

3.3. Comparison among classification models 

We followed the EPA guidelines for PM2.5 exceedances to train our 
supervised learning models. We considered daily average exceedances 
to be when the level of PM2.5 is 35 μg/m3 or greater (Fig. 2). To increase 
data availability for testing, we relaxed the threshold to 12 μg/m3 (the 
annual standard) for exceedances. Using the daily PM2.5 standard for 
machine learning classification may lead to limited model robustness 
due to the small dataset size, potentially resulting in overfitting or poor 
generalization to new data. While relaxing the threshold from the daily 
to the annual standard is necessary to increase data availability, this 
method might introduce biases or inaccuracies, especially in dis
tinguishing between daily and annual exceedance levels in PM2.5 

Table 1 
Summary of statistical results of the daily average PM2.5 predictions at the 
Rubidoux site using different regression models with the testing dataset (10% of 
the complete dataset).  

Method R2 RMSE (μg/m3) 

Decision Tree 0.38 10.00 
RF 0.64 7.56 
SVR 0.78 5.68 
GPR 0.68 7.07 
NN 0.68 7.07  

Fig. 1. Univariate R2 value for 23 features with daily average PM2.5 levels at 
the Rubidoux site. The blue color shows the positive contribution, the red color 
indicates the negative contribution, and the green color is the non-monotonic 
relationship. 
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measurements. We labeled PM2.5 levels as 0 for non-exceedances 
([PM2.5] < threshold) and 1 for exceedances ([PM2.5] ≥ threshold). In 
this study, the total number of predictions was 5465 with 3299 
exceedances above 12 μg/m3 and 489 exceedances above 35 μg/m3. We 
combined the confusion matrices (which visualize the actual and pre
dicted values) with the evaluation metrics described in Section 3.1 to 
assess the models’ ability to predict PM2.5 exceedances to evaluate the 
machine learning models’ classification performance. 

3.3.1. Decision tree and random forest 
We used the RF model developed above, optimizing the hyper

parameters following the method presented in section 3.2.2. To check 
for overfitting, we subjected the model with the optimized hyper
parameters to a 10-fold cross-validation test. The number of predictors 
chosen at each leaf node was 4 for with a threshold of 12 μg/m3 and 8 
with a threshold of 35 μg/m3. Also, we applied the decision tree model 
developed in section 3.2.1. 

3.3.2. Gaussian process classification 
The Gaussian process classification used the same process as the GPR 

while projecting the regression results from the real number domain 
(-inf, inf) to the probability domain [0, 1]. We chose the same kernel and 
hyperparameters used in GPR in section 3.2.4. The uncertainty of this 
method is evaluated by 10-fold cross-validation. 

3.3.3. Support vector machine 
The primary factor impacting the SVM model’s performance is the 

selection of kernels. There are four common kernels to be chosen from: 
linear, polynomial, RBF and sigmoid. We developed SVM models with 
all four kernels (linear, polynomial, sigmoid, and radial) and evaluated 
their accuracy and precision (Table S2). The RBF kernel had the highest 
accuracy and precision values, so we opted for the RBF kernel to build 
the SVM model in this study. Also, we tuned the SVM model to achieve 
the optimal cost value. We selected a cost value of 4 for the SVM model 
when the threshold was 12 μg/m3 and 1 when the threshold was 35 μg/ 
m3. Moreover, we applied min-max normalization to standardize all the 

Fig. 2. The observed and counterfactual PM2.5 concentrations with the small changes to surface relative humidity, wind speed, VOC and NOx emissions using 
random forest model. The counterfactual concentrations are computed by (observations-simulations) + predictions (to reduce the uncertainty). 
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feature values. 

3.3.4. Perceptron and neural network 
The perceptron is a type of one-layer neural network that comprises a 

linear layer and an activation function. The predictions using the per
ceptron can be used for binary classification by applying a threshold (for 
instance, values above 0 can be classified as the first class, and those 
below 0 as the other class). To prevent overfitting, a regularization term 
in the loss function can be used as a penalty to reduce the weights of 
unimportant features. In this study, we tuned different penalty methods 
including the L1 and L2 norm of weights. Surprisingly, the models 
without any penalty had the best performance on both training and 
testing datasets. This can be explained by the perceptron’s simplicity, 
which may not capture the non-linear relationships between input and 
output even without penalties. 

The neural network (NN) approach used the softmax function (a 
normalized exponential function) to map results from the real number 
domain (-inf, inf) to the probability domain (0, 1). Unlike regression 
applications, we used mean square error as the loss function to train the 
NN model for classification. The classifier utilized cross entropy as the 
loss function, which measured the differences between predicted and 
observed probability and trained the model to decrease the differences. 
We built the NN model for classification according to the specifications 
outlined in Table S7. 

3.3.5. k-nearest neighbors 
The model performance of k-NN is primarily influenced by the se

lection of the number of nearest neighbors (k), which generally prefers 
an odd number and should not exceed the square root of the number of 
data points. As we have approximately 5500 observations, the largest k 
value is around 73. We tested all the odd numbers between 1 and 73 and 
assessed their stability using 10-fold cross-validation. After comparing 
the accuracy and precision values, we chose k = 11 to build the k-NN 
model for the threshold = 12 μg/m3, and k = 21 for the model with the 
threshold = 35 μg/m3. Additionally, we applied min-max normalization 
to scale the values of each indicator. 

3.3.6. Diagnostic results 
We applied the confusion matrix to summarize the total number of 

correct and incorrect predictions to assess the performance of the clas
sification models. The subdiagonal of the confusion matrix represents 
true positive and true negative, which shows the correct predictions for 
PM2.5 exceedances and non-exceedances, while the main diagonal (false 
negative and false positive) shows the incorrect predictions (Fig. S3 
shows the annual average PM2.5 exceedances (levels larger than 12 μg/ 
m3) and Fig. S2 shows the daily average PM2.5 exceedances (levels larger 
than 35 μg/m3), the SI Table 8 includes a comparison for predictions of 
annual average exceedances). Similar to predicting annual average 
concentration trends, the classification models also predicted daily and 
annual average PM2.5 exceedances effectively (Table S6). 

In this study, we made a total of 5465 daily predictions, with 3299 
exceedances (larger than 12 μg/m3) and 489 exceedances (higher than 
35 μg/m3). The SVM model has the highest accuracy for predicting the 
annual average PM2.5 exceedances with the most correct predictions for 
both exceedances (true positives) and non-exceedance predictions (true 
negatives), and the least incorrect predictions (false positives and false 
negatives), followed by the neural network, Gaussian process classifi
cation, and random forest. Compared to the classification results using a 
threshold of 12 μg/m3, the efficacy of these eight classification methods 
reduces when the threshold is increase to 35 μg/m3 (Fig. S2). This 
decline in performance is characterized by most of the values in the 
confusion matrices in the lower left quadrant (true negatives), and all 
the methods having fewer predicted PM2.5 exceedances than were 
observed. This is partly due to not capturing very transient emission 
events such as wildfires. The perceptron had the worst performance for 
predicting the exceedances in that the number of correct predictions was 

the least and the most incorrect predictions, although it has the most 
correct daily average exceedances predictions (which is 354 days). 

We used multiple approaches (section 3.1 and Table 2, S8) in addi
tion to the confusion matrix to evaluate the accuracy and precision of 
our models. The precision value is used to determine whether the labels 
of the predictions are correct, while the POD value assessed the model’s 
ability to detect the exceedances and ranges from 0 to 1. A high POD 
indicated that exceedances are correctly, but this value did not consider 
false negatives in its calculation. Hence, a POD value of 1 may indicate 
poor performance if the labels all data as exceedances when that may not 
be the case. The POD value of the perceptron classifier was the lowest, 
consistent with the result from the confusion matrix (Figs. S2 and S3), 
which showed that this model’s performance was the worst among all 
the machine learning models. 

The F1 score is computed from the harmonic mean of the precision 
and POD values, serving as a key criterion for comparing model per
formance. In this study, we combined the POD, precision, accuracy, and 
F1 score values to do the assessment in order to avoid bias. The SVM 
model has an overall best performance among all the models (the 
highest accuracy, the second highest precision, the third highest F1 
score, and the 5th POD values), followed by Gaussian process classifi
cation and logistic regression (which also has the highest accuracy, even 
has a better F1 score and POD values, but a lower precision). The de
cision tree, perceptron and k-NN method has a slightly worse perfor
mance for predicting daily PM2.5 exceedances (Table 2). We also built 
these classification models at different sites in Southern California. 
Although the performance of the SVM, RF, and Logistic models varies by 
site, the accuracy and precision of most SVM models at various sites are 
generally the highest. This is followed by the Logistic model and then the 
Random Forest model, aligning with the performance of different clas
sification models observed at Rubidoux. 

3.4. Discussions 

3.4.1. Performance of machine learning models for predicting the future 
PM2.5 

We applied the built machine learning models to predict PM2.5 
concentrations with the observed meteorological data and projected 
emissions in 2020 to further assess the predictive accuracy of each 
machine learning model. R2 values ranged between 0.08 (Decision Tree) 
and 0.37 (GPR). In 2020, the Rubidoux site recorded some extreme 
PM2.5 values, likely due to wildfires. After excluding data from those 
particular days, the gaussian process regression model was the most 
accurate in predicting future scenarios among all the models, followed 
by random forest and support vector regression (Table 3 and Fig. S7). 
However, the predictions using SVR are closer to the observations 
compared to RF and GPR based on the slope and RMSE value (Table 3 
and Fig. S7). This suggests machine learning models can predict his
torical values well, but hard to predict the forecasted results accurately. 
RF and SVR captured some of the complex interactions of factors 
influencing PM2.5 concentrations and are better applied to predict PM2.5 
levels. However, none of these models accurately predicted the extreme 
values, suggesting a potential integration with a chemical transport 

Table 2 
Summary of evaluation matrices of the daily average PM2.5 exceedances at the 
Rubidoux site using different classification models (The threshold is 35 μg/m3).  

Model Accuracy Precision F1 Score POD FTP 

Decision tree 0.89 0.42 0.44 0.45 0.55 
K-NN 0.92 0.63 0.52 0.44 0.56 
Gaussian process 0.94 0.76 0.65 0.57 0.43 
Logistic 0.94 0.76 0.63 0.53 0.47 
Neural network 0.92 0.60 0.59 0.58 0.42 
Perceptron 0.91 0.52 0.52 0.51 0.49 
Random forest 0.93 0.85 0.53 0.38 0.62 
SVM 0.94 0.83 0.60 0.46 0.54  
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model might be beneficial. 

3.4.2. Performance of each machine learning models for sensitivity tests 
We applied small changes to the key indicators to evaluate their 

response to PM2.5 levels with RF and SVR, based on the rank of variable 
importance. Surface RH and maximum temperature were found to 
positively influence PM2.5 levels. A correlation was observed between 
higher RH at 850 mb, stronger wind speed, and a decline in PM2.5 
concentrations (Fig. 2, S3 and S4). Most emission variables, particularly 
NH3 and VOC emissions, were associated with a positively relationship 
with PM2.5 levels. A higher NH3 and VOC emissions appear to increase 
PM2.5 concentrations (Fig. 2 and S3). NOx emissions positively affected 
PM2.5 levels in the early years, but from 2015 onwards, a 1.5 multiplier 
for NOx emissions showed a negative impact on PM2.5 (Fig. 2). This 
could be attributed to NO titration, which reduces ozone formation, 
impacting the oxidative capacity and subsequently, PM2.5 formation. 

There is a clearer divergence between various multipliers in 2000s 
for VOC, NOx, and SO2 emissions compared to later years, indicating the 
sensitivity of PM2.5 concentrations to these emissions changes (Fig. 2 
and S4). The RF model indicated a consistent influence of NH3 and PM2.5 
emissions on PM2.5 levels, suggesting that even slight changes in these 
two emissions could predictably affect PM2.5 concentrations over time 
(Fig. S4). However, the sensitivity of NH3 and PM2.5 using SVR showed 
varying responses similar to other emission variables. There is a variance 
in the response of each indicator to PM2.5 concentrations when using RF 
and SVR (Fig. S6). 

Meteorological factors’ sensitivity differences are more uniform and 
less than those of emission variables (Fig. S6). This may be due to the 
broader temporal resolution of the emissions and their significance. The 
sensitivity differences for emission variables showed variations in the 
early years but stabilized after 2010. This suggested that while both 
models can capture most of PM2.5 concentrations, their sensitivities to 
specific emission/meteorological variables differ. Such differences sug
gest the importance of model selection based on the specific research 
objectives, as the choice of model can influence the response of various 
factors on PM2.5 concentrations. We may need to use the Decoupled 
Direct Method (DDM) in the chemical transport model, which can effi
ciently calculate the direct sensitivities of pollutant concentrations to 
various input parameters during each model simulation step by 
computing the first-order derivatives, to improve the precision of the 
sensitivity analyses. 

3.5. Limitations 

There are several limitations in the development of the models in this 
study. First, incorporating additional features such as number of 
detected fire events near the monitor could potentially improve the 
model’s performance. Second, optimizing all the hyperparameters of 
each machine learning method can be a time-consuming and subjective 
process, so we only considered the common hyperparameters. The 
optimal machine learning method for predicting air pollutants may vary 
depending on the specific pollutant being analyzed. Also, the size of the 
dataset and the interaction terms can also affect the comparison between 

machine learning methods, as previous research has shown the rela
tionship between the model performance and the size of the training 
dataset is not always linear (Bailly et al., 2022). Finally, combining 
machine learning models with chemical transport models could improve 
the accuracy of predictions and the sensitivity test. 

4. Conclusions 

This study developed and compared the machine learning-based 
models for predicting the PM2.5 levels and the number of PM2.5 ex
ceedance days at the Rubidoux site in the South Coast Air Basin of 
California, using precursor emissions, meteorological factors, and 
climate indices. The statistical results showed that the support vector 
regression model, with all the available features and the Gaussian pro
cess regression model, with the selected features after tuning the 
hyperparameters worked best for the PM2.5 predictions (including daily 
average, annual average, and the 98th percentile daily average PM2.5 
levels), although the performance of all methods, except the decision 
tree model, were relatively similar. The decision tree model had the 
worst performance in capturing PM2.5 levels, although it is less complex 
and computationally faster than other methods. The support vector 
regression model, on the other hand, requires fewer computational re
sources than other complex machine learning methods (e.g., the random 
forest, and neural network models), with relatively short running time. 
However, computational time could become more critical with larger 
datasets. In summary, the support vector regression model had high 
predictive accuracy and good computational efficiency. The variable 
importance analysis showed that precursor emissions had a greater 
impact on PM2.5 levels over time than meteorology, though meteorology 
caused large day-to-day variations. The support vector machine model 
has the highest accuracy and precision for predicting the number of 
PM2.5 exceedances days, followed by the Gaussian process classification 
model, neural network, and random forest models. 

This work supports the idea that advanced machine learning 
methods can effectively capture daily and annual PM2.5 levels and 
attribute such concentrations to emissions and meteorological factors 
(including climate impacts) over time, and can be used to provide daily 
predictions for health analyses and policy assessment and formulation, 
including capturing the non-linear responses to further emissions re
ductions and to assess how PM2.5 will respond under different meteo
rological regimes, including changing climate. 
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Table 3 
Summary of statistical results of the daily average PM2.5 predictions at the 
Rubidoux site using different regression models in 2020.  

Method Year 2020 Year 2020 (exclude extreme PM2.5 

values) 

R2 RMSE (μg/m3) R2 RMSE (μg/m3) 

Decision Tree 0.008 8.47 0.27 5.07 
RF 0.36 7.23 0.62 3.81 
SVR 0.36 6.91 0.58 3.66 
GPR 0.37 6.75 0.60 3.78 
NN 0.32 7.06 0.52 4.19  
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