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In wildland fires, wind affects fire propagation, emission intensity, and smoke transport; therefore, uncertainties
in wind simulations can critically impact PM; 5 concentration produced by coupled fire-atmosphere models or
chemical transport models. These uncertainties must be addressed prior to assessing other parameters that may
affect model-predicted PMy 5 concentrations through comparisons with observations. This study simulated
prescribed fire events with accurate ignition pattern design and high spatial-temporal resolutions using the
coupled fire-atmosphere model WRF-SFIRE. We designed, implemented, and evaluated various wind bias
reduction and smoke model evaluation methods to quantitatively capture the impacts of wind uncertainty on
simulated smoke concentrations. For the wind bias reduction methods, incorporating wind observations into
initial and boundary conditions proved effective in reducing bias, especially for wind speed. The suggested
method resulted in RMSE values of 63 degrees for wind direction and 0.5 m/s for wind speed, lower than the
standard WRF nudging benchmark’s 71 degrees and 1.5 m/s, respectively. This improvement in wind simulation
accuracy enhanced the smoke simulation performance, successfully identifying 5 out of 8 detected PMj 5 peaks
(> 35 pg/m®) missed in the benchmark WRF simulation using nudging. Among smoke model evaluation
methods, which are post-analysis algorithms on the numerical modeling results, the equal time backward/for-
ward trajectory method was the most effective approach. It successfully captured 7 PM; 5 peaks, which were not
well simulated in the nudging benchmark. These smoke evaluation methods estimated uncertainty in smoke
concentration by considering the simulated wind bias and demonstrated that the smoke concentration simulation
is highly sensitive to the wind bias from the wind simulation. This study is unique in suggesting novel solutions to
improving modeled wind field data and creative approaches to post-analysis of smoke transport simulations.

1. Introduction land management strategy to decrease fuel load, promote ecosystem
health, and reduce wildfire damage. However, both wildfire and pre-
scribed fire degrade the air quality since a significant amount of air

pollutants, such as particulate matter (PM), volatile organic compound

Wildfires, which are unplanned and uncontrolled vegetation-burning
events, have adverse effects on human health and wealth. In recent

years, wildfire intensity and frequency have increased in the United
States (Jaffe et al., 2020; Dennison et al., 2014), and the trend is ex-
pected to continue due to global warming (Liu et al., 2013; Diffenbaugh
et al., 2021; Jolly et al., 2015; Burke et al., 2023). Prescribed fires are
controlled, typically low(er)-intensity burns proposed as an effective
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(VOQ), and nitric oxide and nitrogen dioxide (NOy), are emitted during
both flaming and smoldering phases of combustion (Prichard et al.,
2020). To assess the air quality impacts induced by wildland fires, which
are critical for public health studies and policy making, numerical
models such as fire behavior models and chemical transport models are
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implemented to provide spatial-temporal smoke predictions (Chen et al.,
2021; Matz et al., 2020). Fire and smoke simulations are also essential
for fire management, helping fire managers make decisions about pre-
scribed fires and plan experimental field studies (Kochanski et al., 2018).

WREF-SFIRE (Mandel et al., 2014; Mandel et al., 2011) is a fire
behavior model incorporated in Weather Research and Forecasting
Model (WRF) (Skamarock et al., 2019), which simulates fire propagation
and smoke transport. The chemistry mechanism can also be considered
by coupling with WRF-Chem (Kochanski et al., 2016). Unlike typical
chemical transport models, such as Community Multiscale Air Quality
Modeling (CMAQ) (Byun and Schere, 2006) or Comprehensive Air
Quality Model with Extensions (CAMx) (Emery et al., 2024), which
utilize the pre-processed meteorological fields and fire emissions, the
WREF-SFIRE considers the coupling effects between atmosphere and fire
(Mandel et al., 2011; Beer, 1991). The model simulates fire-modified
meteorology and fire propagation under specific meteorological condi-
tions. The emissions and vertical plume distribution due to pyro-
convection are calculated online based on simulated local meteorology
and fire behavior. Previous studies showed that the WRF-SFIRE could be
conducted to simulate the fire propagation and air quality impacts for
both wildfires (Kumar et al., 2024; Lu et al., 2012; Kochanski et al.,
2019; Mallia et al., 2020) and prescribed fires (Mallia et al., 2020; Mallia
et al., 2018) under desired ignition patterns.

Emission estimations and meteorology are the fundamental factors
impacting air quality simulations and primary sources of uncertainties.
Many studies focused on the impact of emission uncertainty on air
quality modeling, particularly in long-term and large-scale simulations
(Tian et al., 2009; Carter et al., 2019; Su et al., 2023). For instance,
Carter et al. (Carter et al., 2019) simulated black carbon and organic
carbon concentrations using different fire emission inventories,
including Global Fire Emissions Database (GFEDv4s) (Giglio et al.,
2013), Fire Inventory from NCAR (FINNv1.5) (Wiedinmyer et al., 2011),
Quick Fire Emissions Dataset (QFEDv2.4) (Koster et al., 2015), and
Global Fire Assimilation System (GFASv1.2) (Kaiser et al., 2012), over
North America from 2004 to 2016. The uncertainty in the fire emissions
could lead to 0.5 to 1.6 pg/m> differences in annual
population-weighted PMs 5. Liu et al. (Liu et al., 2020) conducted an
adjoint monthly GEOS-Chem simulation for the Indonesia region with
different fire emission inventories, including GFEDv4s, FINNv1.5,
GFASv1.2, QFEDv2.5r1, and Fire Energetics and Emissions Research
(FEERv1.0-G1.2) (Ellison et al., 2014) from 2003 to 2016. Although
smoke simulations using different fire inventories were correlated
(correlation ranging from 0.64 to 0.84), the magnitude of mean smoke
PMy 5 during the burning season (July to October) varied across in-
ventories by >20 pg/m® (>500 %). In these studies, the effects of het-
erogeneous meteorological conditions, like wind direction, tend to
average out and become less important compared to the regional high
spatial-temporal simulations.

Meteorological conditions, especially winds, are essential in hourly
(sub-hourly) small/smaller-domain fire simulations and are rarely
addressed. Li et al. (Li et al., 2020) offered a powerful analysis quanti-
fying the orders of magnitude differences in smoke modeling results due
to an ensemble of parameter variations, one of which is the meteoro-
logical datasets. Smoke dispersion paths were strikingly different be-
tween simulations using the North American Model (NAM) (NCAR
2015), the North American Regional Reanalysis (NARR) (NCAR 2005),
and the Global Data Assimilation System (GDAS) (NCAR 2015) meteo-
rological datasets (see their Fig. 5). Potter et al. (Potter et al., 2023)
discussed how measured and modeled winds can be quite different, a
finding also reported by some previous studies (Kumar et al., 2024; El
Asmar et al., 2024). The discrepancies between modeled and measured
winds arise from factors such as model averaging (spatial and temporal),
model physics (e.g., mass conservation), and measurement technology,
including how the measured data are averaged/quantified. Model wind
data are an average representative value for the grid cell and thus are not
necessarily representative of the measured winds at a point in the grid
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cell. Measured winds change much more frequently than modeled and
include gusts that the modeling system does not capture. Thus, modeled
data tend to be much smoother and do not have the fluctuations present
in measurements. Miller et al. (Miller et al., 2019) conducted a detailed
comparison of modeled and measured winds during smoke intrusions in
central Oregon and found that daytime mean wind error was approxi-
mately 40 degrees, and at night, the error went up to approximately 80
degrees. The meteorological model also tended to overestimate wind
speeds. These variabilities have dramatic effects on smoke transport,
and these studies highlight the critical importance wind plays in smoke
dispersion modeling and the nuances to be aware of with both modeled
and measured wind data. Large questions remain about how to account
for or correct meteorological wind fields to improve smoke transport
modeling.

Additionally, in fire-atmosphere models, fire propagation, emission,
and smoke transport are all interconnected, highlighting the importance
of an accurate representation of winds. Unfortunately, very few studies
have discussed the impact of wind uncertainty on concentration simu-
lations with traditional chemical transport models or coupled fire-
atmosphere models. Yang et al. (Yang et al., 2011) discussed the
impact of wind on concentration uncertainties by using trajectory
models with different meteorological datasets. The forward trajectory
results indicated that the smoke-impacted region had significant dis-
crepancies under different meteorology inputs. However, the study did
not quantitatively show the wind impacts on the concentration uncer-
tainty. Menendez and coauthors conducted a sensitivity analysis on
wind impacts for CMAQ simulations (Garcia-Menendez et al., 2013) by
applying body-solid rotations to adjust wind direction by + 5°, £10°
and +30°, and scaling wind speed by + 10 %, + 20 % and + 30 %
individually in the Meteorology-Chemistry Interface Processor (MCIP)
(Byun et al., 1999), which provides the meteorological inputs for the
CMAQ model. Then, the study simulated the concentration using CMAQ
under these 12 perturbed wind fields to quantitatively demonstrate the
impact of wind on concentration levels. This method, although prom-
ising, cannot be directly used for the coupled fire-atmosphere models,
which simulate the wind along with the fire simulation instead of using
pre-processed meteorological conditions. Additionally, the study did not
discuss how to mitigate the wind bias using the method or consider the
wind bias when comparing the concentration simulations with obser-
vational data.

This study consists of two parts. The first part examined various wind
bias reduction methods aimed at minimizing wind bias in meteorolog-
ical simulations. These methods include data assimilation with wind
observations or interpolated observation data, as well as adjustments to
initial and boundary conditions. While these approaches reduce wind
bias, they cannot eliminate it. As a result, residual wind bias must still be
considered when evaluating smoke model performance. To address this,
in the second part, we developed and implemented smoke model eval-
uation methods to quantitatively assess wind impacts on smoke simu-
lations. These methods account for differences between observed and
simulated winds, providing a measure of uncertainty in the simulation
results. The wind bias reduction and smoke model evaluation methods
presented in this study are applicable to other chemical transport
models, such as CMAQ and WRF-Chem, for fire-related case studies.

2. Measurements and modeling frameworks
2.1. Prescribed fires and measurements

In this study, we focused on three prescribed burns conducted at Fort
Stewart Army Base in eastern Georgia, United States, on March 2nd,
March 3rd, and March 5th, 2022. The prescribed burn boundaries are
shown in Fig. 1, and the location of Fort Stewart Army Base in Georgia is
indicated in Figure S1. Burn units F6.4 and F6.3 were burned separately
on March 2nd and March 3rd. Burn units E16.2 and E16.3 were burned
together on March 5th. The prescribed burns were ignited using the
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Fig. 1. Monitor locations, prescribed burned units, and WRF-SFIRE simulation domains. Measurements dates (MMDD) are given for the Trailer and USFS monitors.
The red dots show the Fire Radiative Power (FRP) detections from the Fire Information for Resource Management System (FIRMS) (FIRMS, 2022), which includes
active fire products from Terra MODIS, Aqua MODIS, Suomi-NPP VIIRS, and NOAA-20 VIIRS. The polygons aligned with the FRP detections are the prescribed

burned units analyzed in this study.

aerial ignition method, which utilized a helicopter to drop incendiary
chemical-filled ping-pong balls. The helicopter’s Global Positioning
System (GPS) recorded the incendiary objects’ drop positions. To pre-
vent the fire from escaping out of the designed boundary, firebreaks
were set before the prescribed burn was conducted. This was done by
first burning the fuels along the boundaries for perimeter control. To
measure the transported smoke and evaluate the modeling performance,
we employed a mobile air quality monitoring trailer that included a
tapered element oscillating microbalance (TEOM) (El Asmar et al.,
2024; El Asmar et al., 2025) (square symbol in Fig. 1) and two portable
Met One Instruments Inc. Environmental Beta Attenuation Monitors
(EBAM) (Instruments, 2022) USFS 1078 and USFS 1079 provided by US
Forest Service (USFS) (shown as triangle and star symbols, respectively
in Fig. 1) to collect PM; 5 concentration data during prescribed burns.
The monitors were placed in Fort Stewart on March 2nd and 3rd to
capture the smoke from F6.3 and F6.4 as it was transported by the
westerly winds. Then, on March 5th, the monitors were relocated
outside Fort Stewart to capture the smoke coming from E16.2 and E16.3
under southeasterly winds. These monitors measure PM; 5 at a 1-minute
internal sampling frequency, and we averaged the data to 1-hour. Since
the relative humidity (RH) conditions affect EBAM PM; 5 performance
(Schweizer et al., 2016; Zachariassen, 2003), especially at ambient RH
levels greater than 65 %, we excluded EBAM PM,s measurements
collected during periods when RH exceeded this threshold before
computing the hourly averages. We collected wind measurements at a
2-m height from Remote Automatic Weather Stations (RAWS) monitors
(Center, 2008) located in or near Fort Stewart, including Glisson’s Pond
(ggli), Lawson (glaw), Midway (gmid), Taylor’s Creek (gtay), Pembroke
(gpem), and Richmond Hill (gric) (shown as circles in Fig. 1). The wind

data from RAWS is collected in 10-minute mean values prior to data
transmission (Zachariassen, 2003). The data we used were downloaded
directly from the RAWS USA Climate Archive (DRI, 2024), which pro-
vides wind data already averaged to 1-hour intervals. As indicated in the
RAWS review report (Zachariassen, 2003), wind speed is truncated to
whole numbers before transmission (e.g., 6.9 mph becomes 6.0),
potentially underestimating values by up to ~1 mph (0.4 m/s). We also
collected wind measurements from EBAM USFS 1079, which was
equipped with a Met One Instruments anemometer model EX-034
mounted on the EBAM tripod at a height of 1.5-m. The internal sam-
pling frequency of the wind measurements is 1-minute, and the data
were averaged to 1-hour. Since WRF uses 10-m wind for data assimila-
tion and simulates the surface wind at 10-m, we used the log wind
profile (Holmes, 2015) formula (shown in Text S1) to convert the 2-m
wind measurements to 10-m wind. We used a surface roughness
length of 0.03 m (Holmes et al., 2007) in the log wind profile formula,
which corresponds to typical grassland conditions. Locations of mea-
surement platforms are presented in Fig. 1.

2.2. Wind and PMj 5 simulations

First, we simulated meteorological conditions for the study using
WREF version 4.2 (Skamarock et al., 2019). The simulation period was
from March 1st at 0 UTC (February 28th at 19:00 local time) to March
7th at 0 UTC (March 6th at 19:00 local time), which covered all the
prescribed burning events. The simulation was started one day before
the burns to spin up the model. The WRF model used one-way coupling
and included three domains with 12 km, 4 km, and 1 km resolutions
(Figure S2). The initial and boundary conditions for the outermost 12
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km domain came from the NAM 12 km model (NCAR 2015). The Na-
tional Land Cover Database (NLCD) (Homer et al., 2012) was used to
provide the static geographical data. In our benchmark simulations, we
utilized the WRF model with and without data assimilation (nudging)
(Reen, 2016), a standard approach for establishing meteorological
conditions for air quality simulations. In this study, the data assimilation
case utilized the grid nudging and observational nudging with National
Centers for Environmental Prediction (NCEP) global surface and upper
air observational weather data (NCAR 2004; NCAR 2004), deployed
EBAM monitor measurements, and measurements from selected RAWS
stations (parameters used for wind nudging are shown in Table S1).

Then, we used WRF-SFIRE (Mandel et al., 2011) (version 4.2) to
simulate the fire evolution, plume rise, and smoke dispersion and
analyze the impact of assimilated winds on fire and smoke dispersion
simulations. WRF-SFIRE is a coupled-atmosphere model, which con-
siders the interactions between the atmosphere and fire since they
mutually influence each other during the fire spread. The fire spread
rates in WRF-SFIRE are calculated by the Rothermel formula
(Rothermel, 1972). The formula estimates the rate of spread of the
surface fire’s flaming front based on fuel types, fuel moisture, slope, and
wind speed. An external 1 km weather simulation performed with WRF
provided the meteorological initial and boundary conditions. The
WRF-SFIRE model includes a fuel moisture component that is driven by
the simulated weather fields (Mandel et al., 2014; Vejmelka et al.,
2016). This integration provides real-time fuel moisture data essential
for determining the spread rate of fires. Since the WRF-SFIRE model
requires high spatial resolution for simulating fire spread under het-
erogeneous fuel conditions, we used a 200 m atmospheric resolution
with a subgrid ratio of 10, resulting in a fire model resolution of 20 m. A
3D scale-adaptive turbulent kinetic energy scheme (Zhang et al., 2018)
is conducted for the 200 m domain to resolve the “gray zone” issue
(Honnert et al., 2020) in turbulence, where the grid resolution is too fine
for traditional large-scale modeling but too coarse for resolving
small-scale turbulence. The 30 m-resolution LANDFIRE product pro-
vided the elevation data and 13 Anderson fire behavior fuel type data
(Department of the Interior, G.S., and U.S. Department of Agriculture.
LANDFIRE 2016). For simulating the PM5 5 concentrations, we utilized
the PMy 5 inert tracer in WRF-SFIRE, assuming the secondary PMj 5
formation would be negligible since the monitor location was near the
burn units, but this may underestimate PM; 5 mass concentration during
photochemically active periods and when smoke ages beyond 1 h (El
Asmar et al., 2025). We designed two different simulation domains, both
with 145 west-east by 140 south-north grid points, as shown in Fig. 1, to
capture the smoke trajectories. The black frame shows the fire simula-
tion domain on March 2nd and March 3rd. The red frame shows the
simulation domain for the March 5th prescribed fire. We set the emission
factor for each fuel type based on the Smoke Emission Reference
Application (SERA) (Prichard et al., 2020) (Table S2). The aerial igni-
tions during the Fort Stewart burns were represented in the model by
initializing the fire arrival time (TIGN_G). The value of the fire arrival
time variable was updated for each subgrid cell in the WRF-SFIRE input
file according to GPS-recorded ignition time (ignition patterns are
shown in Figures S3-S5). First, we identified the subgrid cells corre-
sponding to each incendiary object’s drop position using the nearest grid
match. Then, we assigned the drop timing of the incendiary object to the
subgrid cell. We also removed the fuel outside the fire boundaries in the
input to avoid the fire spreading out of the boundaries (applied fuel
types and elevation are shown in Figures S6-S8). The simulated con-
centration was compared with the measured PMys to evaluate the
model performance. The fuel moisture model was activated during the
WREF-SFIRE simulations, and the ground fuel moisture content was
initialized as zeros at the beginning of the simulation hour 0 UTC for
each burn date.
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3. Methods

In this study, we designed and implemented various methods to
reduce the uncertainties in wind fields and to investigate the impacts of
uncertain winds on smoke simulations related to prescribed fires
(Table 1). First, two benchmark simulations, one without (B) and one
with nudging (NB), were conducted. These benchmarks provided the
meteorological initial and boundary conditions for the coupled fire-
atmosphere model WRF-SFIRE, and they were used in measuring the
performance of the new methods. The two categories of methods dis-
cussed here are: i) wind bias reduction and ii) smoke model evaluation
methods. The wind bias reduction methods include 1) adjusting the
initial and boundary condition inputs to WRF-SFIRE (AICBC) and 2)
augmenting the assimilation data set by interpolating observational data
for nudging the WRF-SFIRE solution towards observations (AN). The
smoke model evaluation methods are based on statistical analysis after
the WRF-SFIRE simulations, including rotation and translation (RT),
equal time backward/forward trajectory (ETBFT), and equal distance
backward/forward trajectory (EDBFT) methods. All these methods were
implemented to find the pseudo-monitor location, which is the projec-
tion of the actual monitor location considering the uncertainties in
simulated winds. For example, suppose the measured wind indicates
that the smoke directly hit the monitor, but the bias in the modeled wind
directs the smoke away from the monitor. The pseudo-monitor location
in such a situation is directly downwind according to the simulated wind
field. Instead of comparing the monitoring concentration with the
simulated concentration at the actual monitor location, the smoke
model evaluation method uses the simulated concentration at the
pseudo-monitor location.

3.1. Methods for mitigating wind biases

The AICBC and AN methods, as wind bias reduction methods, are
summarized in Table 1, and each is discussed in detail below.

3.1.1. Adjusted initial and boundary conditions (AICBC)

In this method, we adjusted the wind initial and boundary conditions
(IC/BC) that are input to WRF-SFIRE by using wind observations. For
this, we revised the wind field simulated by WRF over the parent domain
to minimize the disparities between observed and modeled winds. First,
we performed a scaling and solid-body rotation on the WRF wind field

Table 1
Method names and short descriptions.
Method Method Name Description
Categories
Benchmarks Benchmark (B) WRF-SFIRE with initial and
boundary conditions (IC/BC)
provided by 1-km resolution WRF
Nudging Benchmark WREF-SFIRE with nudging and IC/
(NB) BC provided by 1-km resolution,
nudged WRF
Wind Bias Adjusted Initial and WRF-SFIRE with IC/BC from wind
Reduction Boundary Conditions fields rotated and scaled according
Methods (AICBC) to wind direction and wind speed
biases
Augmentation Nudging WREF-SFIRE with nudging to
(AN) observational data augmented by
interpolation

Smoke Model
Evaluation
Methods

Rotation and
Translation (RT)

Rotating and translating the
monitor location according to
wind biases to find evaluation
locations

Computing backward and forward
trajectories of equal time to find
evaluation locations

Computing backward and forward
trajectories of equal distance to
determine evaluation locations

Equal Time Back/
forward Trajectory
(ETBFT)

Equal Distance Back/
forward Trajectory
(EDBFT)
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simulated over the 1-km resolution parent domain. The rotation degree
and the scaling factor were calculated from the averaged wind direction
bias and wind speed bias between the 1 km resolution WRF simulation
and observations at meteorology stations (the process is described in
more detail in Text S1 Adjusted Initial and Boundary Conditions Method
section). Accordingly, the metgrid data, which has a combination of
geography and meteorological data processed by WRF Pre-Processing
System (WPS), are modified. Then, adjusted initial and boundary con-
ditions for WRF-SFIRE were generated with the modified data.

3.1.2. Augmentation nudging (AN)

Observational nudging is a method to introduce artificial tendency
terms in WRF simulations, which gradually nudge the model around the
observation stations towards corresponding observations (Reen, 2016).
However, for case studies involving prescribed fires, the observation
stations are spatially sparse, as the study area is typically rural. Addi-
tionally, since WRF-SFIRE is generally used with a high spatial resolu-
tion (~200 m) for computational efficiency, the typical simulation
domain is small, with limited observation monitors. Also, the nudging
method, when using the default settings (Table S1), nudges the simu-
lation with slight intensity in each time step to avoid inducing unreal-
istic results. However, it cannot mitigate all the wind bias for a typical
one-day prescribed fire event simulation. One possible mitigation
method is to increase the nudging intensity by tuning the nudging pa-
rameters, including the radius of influence and the nudging time scale,
which was discussed in previous studies (Bowden et al., 2012; Spero
et al., 2018). In this study, instead of tuning the nudging parameters, we
enhanced the observational data through interpolation to address the
challenge of insufficient monitoring data in small fire simulation do-
mains by leveraging data from the parent domain’s monitors. First, we
generated a 1-km resolution wind field by applying Kriging interpola-
tion (Murphy, 2014; Oliver and Webster, 1990) to the observed u-wind
and v-wind data from selected meteorological monitors. Then, we
extracted the wind data from each grid cell of the 1-km resolution
interpolated observational field and created an augmented observation
dataset over the WRF-SFIRE domain. This dataset was then used as the
observational nudging input to the WRF-SFIRE simulation (the process is
described in more detail in Text S1 Augmentation Nudging Method
section).

3.2. Methods for smoke model evaluation under uncertain winds

Since wind biases are commonly found in meteorological simula-
tions, even when wind reduction methods are applied, they must still be
considered in smoke model evaluation. Smoke model evaluation
methods below quantify the uncertainty in smoke concentration caused
by wind biases. These methods are summarized in Table 1 and discussed
in detail below.

3.2.1. Rotation and translation method (RT)

The idea behind the rotation and translation method is similar to that
of the AICBC method above. Instead of conducting solid-body rotation
and scaling of the wind field to correct the initial and boundary condi-
tions, we calculated pseudo-monitor locations using the wind bias. Also,
unlike considering the spatially averaged wind bias across the simula-
tion domain, as done in AICBC, this method focuses on the wind bias at
the monitor location. Some concentration monitors are not paired with
collocated wind-measuring anemometers. We assumed the wind bias at
such concentration monitoring locations to be the same as that at the
nearest wind monitor (the assignments are listed in Table S3). To miti-
gate the effect of the wind direction bias on the trajectory of the smoke
plume, we rotated the monitor location around the centroid of the burn
unit by an angle equal to the hourly wind direction bias at the selected
monitor (Figure S9 is the conceptual figure for explanation). To mitigate
the effect of the wind speed bias on the smoke impact timing, we
translated the monitor location by the distance that the smoke would
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travel due to the hourly wind speed bias. By combining these two pro-
cesses, we calculated a pseudo-monitor location for a specific wind di-
rection bias and wind speed bias at each hour (details on rotation and
translation operations are provided in Text S1 Rotation and Translation
Method section). However, the concentration field during a specific hour
was not only affected by the wind field at that hour but also by the wind
fields at previous hours, since all the wind vectors along the trajectory
consecutively act on the smoke plume during its transport. To address
this uncertainty, we spanned the ranges of wind direction and speed
biases from the current and previous hours and calculated the pseudo-
monitor locations for all the combinations in the range. For example,
assuming wind direction and speed biases at hour t are 64;,(t) and osp4(t),
to estimate the wind uncertainty impacts on concentration at time t, we
considered all the combinations of wind direction and speed biases in
the following range:

[min(og(t—1), 64r(t)), max(ca(t—1), o4(t))]
x [min(ogpa(t—1), oga(t)), max(opa(t—1), oga(t))] (@))

where the symbol x represents the Cartesian product. We calculated the
pseudo-monitor locations for each wind bias in this range and all
possible concentrations at these pseudo-monitor locations.

3.2.2. Equal time (ETBFT) and equal distance (EDBFT) backward/
forward trajectory methods

The trajectory methods included backward and forward trajectory
steps to find the pseudo-monitor location (Fig. 2). In the backward
trajectory step, we started from the concentration monitor location and
aimed at finding the source of measured smoke using the observed wind.
Since there is no continuous spatial field of wind observations, the winds
along the backward trajectory needed to be estimated. We assumed the
observed winds along the trajectory had a Gaussian distribution, in
which the mean value was the measured wind at the concentration
monitor location (if there were no collocated wind measurements at the
concentration monitor, we assigned the wind at the nearest wind
measuring monitor as the mean) and the variance was the spatial vari-
ance at the current hour among the wind monitors over the WRF-SFIRE
domain. The trajectory continued until the closest location to the burn
units. These locations were assumed to be the source of the smoke and
used as the starting point for the forward trajectory step. To find the
pseudo-monitor location, i.e., the projection of the monitor location
under the simulated wind field, we calculated the forward trajectory
with the wind field simulated by WRF-SFIRE.

The first method, equal time backward/forward trajectory (ETBFT),
calculated the forward trajectory using the same period as the backward
trajectory. This method would conceptually mitigate the impact of un-
certainties in simulated winds on smoke transport. However, the dis-
parities of smoke diffusion between reality and simulation due to the
wind speed bias were not addressed by this method. For example, higher
wind speed in the simulation compared to the real world would not only
affect the timing of the smoke hitting the monitor but also dilute the
intensity of the smoke. An alternative method, equal distance back-
ward/forward trajectory (EDBFT), was implemented based on the
assumption that the diffusion of the smoke was related to the transport
distance. So, the forward trajectory for a period that resulted in the
minimal difference between the smoke travel distance and the backward
trajectory distance was used (technical and mathematical details of both
methods are provided in Text S1).

To estimate the uncertainty in the backward trajectory step, we
conducted a Monte Carlo simulation and created 1000 trajectory sam-
ples assuming Gaussian distributions for u and v winds. For each back-
ward trajectory sample, we calculated the forward trajectory to find a
pseudo-monitor location and extracted the concentration at that loca-
tion. The 1-sigma concentration range (which refers to the 16th and
84th percentiles, or one standard deviation below and above the mean in
a Gaussian distribution) at pseudo-monitor locations from all samples
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Fig. 2. Representation of equal time and equal distance backward/forward trajectory methods. The differences between the equal time trajectory (dark green) and

the equal distance trajectory (light green) are in the forward trajectory step.
covered the uncertainty in concentration caused by variable winds.
4. Results

In this section, we first present the wind and smoke simulation per-
formances of the two benchmarks, B and NB. The WRF modeling results
of these benchmarks at 1-km resolution are used by the wind bias
reduction methods and provide IC/BC to smoke simulations at 200 m
resolution. The effectiveness of wind bias reduction methods is evalu-
ated by comparing them with NB at 200 m resolution. Additionally, we
analyzed the smoke simulations of NB at 200 m resolution to illustrate
the impacts of biased winds by using smoke model evaluation methods.

4.1. Benchmark wind and smoke simulations

We compared WRF simulated winds at 12 km, 4 km, and 1 km res-
olutions with hourly surface wind measurements from Techniques
Development Laboratory (TDL) (Commerce 1987), our measurements,
and selected RAWS stations. The model performance was assessed using
statistical metrics (formulas provided in Text S2) calculated between
observed and simulated winds on March 2nd, March 3rd, and March 5th,
which were prescribed burning dates. The simulation performance of
surface wind direction and wind speed was evaluated under different
statistical metrics (Tables S4 and S5), and the method for calculating
wind speed and direction bias was detailed in Text S3. For the overall
wind modeling performance, we used the Taylor diagram (Figure S10),
which combines the model’s standard deviation, centered root mean
square error (CRMSE), and correlation with observations in a single plot
for model evaluation (Taylor, 2001). The distance between any model’s
point and the observation indicates the performance of the model, with
the performance being better with a shorter distance. For the wind di-
rection and wind speed, the Taylor diagram indicated that NB and B
showed a similar performance at 12 km and 4 km domains. NB showed
improvements over B in wind simulations, especially on wind speed in
the 1 km domain. However, the hourly wind simulation from NB in the 1
km domain still showed poor performance, especially on wind speed
simulations, where the correlation was 0.34. Although the simulated
wind direction in the 1 km domain correlated with observations (r =
0.88), the root mean square error (RMSE) was 71 degrees. The subpar
performance can partly be attributed to the NCEP meteorological data
used for nudging, which was reported every three hours, whereas the

model was evaluated using hourly wind measurements. When we used
these 1 km resolution benchmark meteorological simulations to provide
ICBCs, wind simulations in B and NB at 200 m resolution showed bias
compared to observations during the prescribed burning periods. NB
showed slight improvements in both wind direction and speed compared
to B (Fig. 3). However, both benchmarks displayed wind direction
RMSEs higher than 71 degrees (Table S6) and wind speed RMSEs higher
than 1.5 m/s (Table S7). The relatively low accuracy of wind simulation
raised concerns about the performance of smoke simulations. Under
such biased wind simulations, B (Figure S11) and NB’s (Figure S12)
smoke simulations failed to capture the PM; 5 peaks at Trailer on March
3rd and March 5th and at USFS 1078 on March 2nd. Also, the PMy 5 peak
at USFS 1079 on March 3rd was significantly underestimated in NB’s
smoke simulations.

4.2. Wind and concentration performance under different wind bias
reduction methods

The wind bias reduction methods were dedicated to decreasing the
wind simulation bias in the fire simulation domain to mitigate the un-
certain wind effects on concentration simulations. We used the statisti-
cal metrics mentioned above (results are shown in Tables S6 and S7) and
Taylor diagrams (Fig. 3) to evaluate wind bias reduction methods’
performance (Emery et al., 2017; Emery et al., 2001) during the fire
simulation period, from the prescribed fire start time to the end of the
UTC day (19:00 local time). Wind bias reduction methods used IC/BC
from B or NB at 1-km resolution and were compared with NB at 200-m to
understand their effectiveness. The Taylor diagram indicated that the
AICBC method was the most effective method among all the simulations,
especially for improving the wind speed simulation (Fig. 3). Here, we
mainly focused on the AICBC method with nudging. The performance of
AICBC without nudging can be found in Tables S6 and S7. The AICBC
method resulted in 12 % and 64 % decreases in the RMSE for the wind
direction and wind speed compared to the NB. The effectiveness of the
AICBC method can be explained by the fact that the method forced the
initial and boundary conditions and, consequently, the simulation is
closer to the observations instead of propagating the wind bias from the
parent domain to the study domain. The nudging process also improved
the wind simulation performance. For the AN, the mean error (ME) and
RMSE of the wind direction and wind speed were slightly improved
compared to the NB; however, the benefits from nudging were not
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evident in this study. This could be because the nudging method nudged
the model results to observation with a small perturbation term without
tuning nudging parameters, and the correction intensity was kept low
for each nudging step.

For the concentration evaluations, we compared the simulated con-
centrations with the concentrations observed after the prescribed fire
was conducted (Fig. 4, Figures S13-S14). With the AICBC method
(Fig. 4), which had the best wind simulation performance among all the
methods, the smoke concentration simulation performance was
improved compared to NB (Figure S12, also shown as black lines in
Fig. 4), especially for capturing the smoke at Trailer FS and USFS 1078
on March 2nd, Trailer FS and USFS 1079 on March 3rd. On March 5th,
the three monitors were close to each other, and the observations indi-
cated that Trailer FS was more heavily impacted by the smoke compared
to the other monitors around 19:30 UTC (14:30 local time), approxi-
mately one and a half hours after the ignition start time. However, all the
simulations, including AICBC, failed to capture the high PM, 5 peak at
Trailer FS between 19:00 and 20:00 UTC (14:00 to 15:00 local time) on
March 5th (an enlarged figure is shown in Figure S15). This can be
explained by the slower fire spread rate and no obvious smoke in the
model after the first 30 min of the fire (Figure S16). Although the model
overestimated the wind speed, the fire propagated slowly since the fuel
moisture was overestimated on March 5th (Figure S17). The almost
doubled fuel moisture content in WRF-SFIRE on March 5th impeded the
model from simulating the first PMj 5 peak at Trailer FS. The AICBC with
nudging simulated the peak starting around 20:40 UTC (15:40 local
time) while the smoke impact lasted until 22:20 UTC (17:20 local time),
much longer than the observed smoke impact. This can be explained by
the high wind direction bias after 21:00 UTC (16:00 local time), which
transports the smoke more westerly in the simulation (Figure S15).

The wind field changed by different wind bias reduction methods
affected not only the smoke transport but also the fire spread direction
and rate (Figure S18), emission time profile (Figure S19), as well as
plume height at monitoring locations (Figure S20). Since the AICBC
method effectively reduced the simulated wind speed, the burned area
and emission rates from AICBC cases were lower than those of the other
simulation cases. However, the AICBC without nudging case had a
relatively high burned area and emission rates at 17:20 UTC (12:20 local
time) on March 2nd. Although the AICBC case had a lower wind speed,
wind direction also influenced the rate of fire spread and emissions.
Because of the heterogeneous fuel distribution, differences in wind di-
rection among the simulations caused the fire to burn different fuel
types. Burned area rates were higher when fire spread to more flam-
mable fuels, and emission rates were elevated when the fire consumed
fuels that burned more quickly or had higher emission factors. The time
profile of plume heights was more sensitive to the wind simulation
compared to burned area and emissions (Figure S20). The plume heights
at monitoring locations were influenced not only by the heat emitted
from the fire but also by smoke transport. The plume heights varied
depending on the relative position within the smoke plume, such as near
the edge or along the centerline.

4.3. Smoke model evaluation methods

Wind bias reduction methods can improve wind simulations, but
cannot eliminate all biases. However, addressing wind bias is essential
before comparing smoke model simulations with observations. To ac-
count for the remaining wind bias, smoke model evaluation methods
were implemented for properly assessing model performance. In smoke
model evaluation methods, the temporal and spatial variation of wind
bias must be addressed since the wind bias at the monitor (or assigned
monitor) does not reflect the wind bias along the smoke trajectory.
These methods considered the uncertainty of concentration due to the
uncertain wind impacts, based on statistical sampling, which is repre-
sented as the gray shaded area in the figures of this section. In this study,
we applied the smoke model evaluation methods to the nudging
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benchmark case (NB). However, the same methods, as post-analysis
algorithms, can be combined with other wind bias reduction methods
to improve the simulation performance and investigate the uncertain
wind impacts on concentrations.

4.3.1. Rotation and translation

The rotation and translation method assumed the simulated con-
centration at the current hour would be affected mostly by the wind bias
from the current hour and then the previous hour. If we applied the
method considering only the current hour’s wind bias, the concentration
corrected for such wind bias could be estimated, which was indicated as
the black dashed line in Fig. 5. We estimated the concentration uncer-
tainty range by considering the wind bias from the current and previous
hours using Eq. (1), which is shown as the shaded area in Fig. 5. The
corrected concentration (black dashed line in Fig. 5) and the concen-
tration uncertainty range (gray shaded area in Fig. 5 indicating the
possible range of concentrations) estimated by the rotation and trans-
lation method showed a better performance compared to the nudging
benchmark simulation (solid line in Fig. 5). The concentration uncer-
tainty range indicated that it was possible to capture the observed PMj 5
concentration peaks at Trailer FS during 17:00 to 19:00 UTC (12:00 to
14:00 local time) on March 3rd and 20:00 to 21:00 UTC (15:00 to 16:00
local time) on March 5th, at USFS 1079 during 19:00 to 21:00 UTC
(14:00 to 16:00 local time) on March 2nd and 17:00 to 19:00 UTC (12:00
to 14:00 local time) on March 3rd, and at USFS 1078 during 17:00 to
20:00 UTC (12:00 to 15:00 local time) on March 2nd. However, the
concentration uncertainty range had a lower concentration than the
observations at Trailer FS on March 3rd. The peak timing at USFS 1078
on March 2nd was earlier than observed. This can be partly explained by
the overestimation of wind speed in the simulation. Since we conducted
translation operations based on the transport distance difference due to
current and previous hour wind speed biases, the disparities in peak
timing could be reduced, but still existed.

To understand the sensitivity of simulated concentration to wind
direction and wind speed, we conducted a sensitivity analysis using
rotation and translation operations as follows. We conducted —70 to
+70 degrees perturbations on wind direction and 0 to 1.5 m/s pertur-
bations on wind speed, which were the ranges suggested by the RMSE of
NB (Tables S6 and S7). For each combination of wind direction and wind
speed bias, we calculated the pseudo-monitor location for each monitor
and extracted the concentration at that location. The sensitivity was
calculated by taking the RMSEs between the simulated concentration
time series at all pseudo-monitors and the corresponding observations
(Figures S21-523). The RMSE could exceed 80 pg/m> under the wind
speed and wind direction bias range we selected, since the biased wind
direction or wind speed could switch the monitor from smoke-impacted
to not-impacted and vice versa, which would induce large differences in
the PM5 5 concentration.

4.3.2. Equal time and equal distance backward/forward trajectories

We used a similar convention as the RT method above; the uncer-
tainty of concentration due to the wind bias was shown as the shaded
area (Fig. 6), and the black dashed line indicated the concentration
corrected by using the wind bias from the assigned meteorological
monitor with the backward/forward trajectory methods. Since we esti-
mated the uncertainty by a 1-sigma range of concentration intensity at
pseudo-monitor locations rather than the maximum likelihood, the
concentration corrected by the exact wind bias at the assigned monitor
could be outside the range (for example, USFS 1078 on March 2nd in
Fig. 6b). For the equal time backward/forward trajectory method
(Fig. 6a), the likely concentrations (indicated by gray shaded area)
covered the observed PMj 5 concentration peaks at Trailer FS from 17:00
to 19:00 UTC (12:00 to 14:00 local time) on March 3rd, and the second
peak from 20:00 to 21:00 UTC (15:00 to 16:00 local time) on March 5th,
at USFS 1079 from 17:00 to 19:00 UTC (12:00 to 14:00 local time) on
March 3rd, and at USFS 1078 on March 2nd from 17:00 to 20:00 UTC



Z. Lietal

Agricultural and Forest Meteorology 376 (2026) 110885

Rotation and Translation

Trailer_FS
Local Time (UTC-5)

10 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 18 13 14 15 16 17 18
150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 L W - 'w . = 125 - \ ’;‘ \ \ \
80 4 11 . )
100 - i 100 'y
60 4 i I
llll. 75 ’ ‘|
50 40 ¢ L 50 - al |
1oy e 19 o
201 , k’.—ﬂﬂ 2 “ o9 o’
0- 0 T T T "’ l\ T T T II o t T T ’l’ T T T
N . , USFS 1079 .
150 A 200 + 125
. U Vo N\
s 150 - 100 -
IS}
75 4
3 100 - l,\ -
\ ;i\ 50 - Pioe
o~ / \ /
2 50 A .I \ . 25 /‘.
a ®-e g ‘___.,_—o/‘ ik
°...‘L‘P.'.*.... O
1 1 1 1 1 1 1 1 1 1 1 USI[:Sll()l78 1 1
200 250 4
S < ’ - - A oW = LR N
150 - I\ 200 -
1\
ro 150 -
100 - Lo\
] \ 100 -
50 4 ! \\
50 .9 /
PRy | L o b 5N /
O ..I_~I(-‘I\\l T T T .l T 0 T ll’ AIF\*I— T T T T T
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
03/02 03/03
UTC Time

Fig. 5. Observed (red dots with dashed line), simulated (blue solid line), and corrected PM, s (black dashed line) at Trailer FS (TEOM), USFS 1079 (EBAM), and USFS
1078 (EBAM) monitors on three prescribed fire days by using the RT method. The shaded area indicates the concentration uncertainty by considering the wind bias
from the previous and current hours. The black and gray arrows at the top show the observed and modeled wind at the nearest meteorological monitor, respectively.

(12:00 to 15:00 local time). Also, the corrected PM; s concentration
(dashed black line) was lower during 16:00 to 20:00 UTC (11:00 to
15:00 local time) on March 2nd at Trailer FS and during 20:00 to 23:00
UTC (15:00 to 18:00 local time) on March 5th at USFS 1078 compared to
the NB simulation (solid lines), displaying reduced concentration bias.
The high PM; 5 concentration at Trailer FS on March 3rd had a high
probability of being captured by considering the wind bias, which was
not captured in the RT method (Fig. 5). Additionally, the peak timing at
USFS 1078 on March 2nd from the ETBFT method was closer to the
measured smoke peak timing than the RT method. However, the shaded
area in the ETBFT method suggested the probability of high PM, 5 at
Trailer FS and USFS 1079 on March 2nd, which were not observed,
while the RT method did not indicate such smoke peaks. The enlarged
shaded areas with ETBFT can be explained by the higher spatial vari-
ability of observed winds among the meteorological monitors. On that
day, the USFS 1079 measured southwestern wind at 19:00 UTC (14:00
local time) while the gpem site reported northwestern wind (shown as
observed Trailer FS wind vector on March 2nd). The ETBFT method
considered the spatial and temporal variability of wind bias by simu-
lating the smoke trajectories, while the RT method only considered the
temporal variability of the wind during smoke transport (current hour
and the previous hour) without considering the spatial variability.

For the equal distance backward/forward trajectory method
(Fig. 6b), the concentration uncertainty range also showed the proba-
bility that the high PMy 5 peaks could be captured at Trailer FS from
17:00 to 19:00 UTC (12:00 to 14:00 local time) on March 3rd, at USFS
1079 from 17:00 to 19:00 UTC (12:00 to 14:00 local time) on March 3rd,
and at USFS 1078 on March 2nd from 17:00 to 20:00 UTC (12:00 to
15:00 local time). These two methods showed similar patterns since they
conducted the same backward trajectory process to find the source of the
smoke parcel. The difference was in the sampling of smoke along the
forward trajectory. Both methods used trajectories calculated using the
same simulated wind field, but they sampled concentrations at different
times. The highest level of the shaded area in the EDBFT method was
higher than the ETBFT method on March 5th for all three monitors. This
was expected since the EDBFT method was designed to mitigate the
dilution and diffusion effect due to the higher wind speed. The smoke
was expected to be more concentrated with shorter transport distance
due to less diffusion. However, the smoke concentration can be lower in
EDBFT compared to ETBFT, as encountered on March 3rd at Trailer FS
and USFS 1079. In ETBFT, the pseudo-monitors were located farther
from the source because the forward trajectory distance, based on the
overestimated wind speed from WRF, was longer than the backward
trajectory distance. In contrast, EDBFT assumed equal forward and
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Fig. 6. Observed (red dot with dashed line), simulated (blue solid line), and corrected PM, 5 (black dashed line) at TEOM monitor (Trailer FS), USFS 1079, and USFS
1078 on three prescribed fire days by using the ETBFT method (a) and the EDBFT method (b). The shaded area indicates the concentration uncertainty by considering

the wind bias uncertainty along the trajectory. The black and gray arrows indicate the observed wind and modeled wind at the assigned meteorological monitor,
respectively.
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backward trajectory distances. Consequently, the higher plume rise near
the source, caused by the elevation of fresh smoke with greater energy,
leads to reduced surface concentrations at pseudo-monitors in EDBFT.
This effect was particularly evident on March 3rd when these monitors
were closer to the burn units than on other dates.

5. Discussion

The uncertainties from wind simulations highly impacted the PMy 5
concentration field simulated by WRF-SFIRE. In this study, we showed
that wind bias reduction methods can mitigate the wind simulation bias.
Nudging to wind observations augmented through Kriging interpolation
(i.e., the AN method) slightly improved the wind simulations; however,
it did not improve the concentration simulations in the study cases
(Figures S13). Although the nudging intensity could be increased by
amplifying the magnitude of nudging artificial tendency terms in the
settings, this was not done here since it may introduce unrealistic pat-
terns in WRF simulations (Glisan et al., 2013). The AICBC method was
the most effective method in reducing wind bias, particularly in
addressing the overestimations of wind speed reported in many studies
(Yu et al., 2022; Carvalho et al., 2014; Dzebre and Adaramola, 2020;
Gholami et al., 2021; Jiménez and Dudhia, 2012; Pan et al., 2021;
Carotenuto et al., 2020). Also, the smoke concentration simulation
significantly improved with the winds simulated by the AICBC method.
The improvements in concentration simulation could be partly
explained by the reduced wind bias impacts on smoke transport, which
was the main focus of this study. Moreover, the improved wind simu-
lation also influenced the fire behavior simulation, such as the fire
spread rate and direction, affecting the plume height, emission profile,
and intensity (Figures S18-S20). These factors are critical for simulating
smoke intensity, as higher fire spread rates, increased emissions, and/or
lower plume heights can lead to higher ground-level smoke concentra-
tions. The impacts of biased winds on these factors could be further
investigated in future work, particularly if corresponding observations
are available. Despite improving the wind simulation, the AICBC
method still had limitations, and it could not eliminate all the wind bias
at all monitors. In this method, we calculated an hourly bias by aver-
aging all wind biases from all monitoring stations within the 1-km
domain (WRF-SFIRE’s parent domain). Then, the initial and boundary
conditions were adjusted based on the averaged bias. The uniform
adjustment for the whole domain effectively improved the simulation
when a systematic error exists, such as the wind speed overestimation.
However, the wind bias still existed in the initial conditions at the
observed monitor locations after the correction, since the wind bias from
different observations varied. For instance, the wind speed ratios be-
tween observations and WRF simulations were 0.25 and 0.11 at USFS
1079 and gpem, respectively, at 20:00 UTC (15:00 local time) on March
2nd. Since the AICBC method used the averaged wind bias, the initial
conditions for wind speed at both monitoring locations were adjusted
using the same scaling factor. The wind speed in the initial condition at
gpem, although reduced, remains higher than the observations. To
overcome such bottlenecks of the AICBC method, future studies could
consider using wind fields generated through interpolation or data
fusion (Chang et al., 2015; Wang et al., 2021) of the parent domain’s
wind field to provide initial and boundary conditions for the target
nested domain. Another approach would be to use a meteorological
model with higher spatiotemporal resolution, such as the
High-Resolution Rapid Refresh model (HRRR), with the AICBC method
to improve the ICBC used in WRF-SFIRE simulations. HRRR provides
3-km resolution meteorological data generated by a WRF simulation
using data assimilation from various observational sources, including
meteorological monitors, radar, satellite-based retrievals, and aircraft
data (Benjamin et al., 2016). This plethora of data sources could
potentially improve the simulation performance compared to the data
assimilation configuration used in this study. Additionally, using HRRR
to provide ICBC would reduce the computational costs by eliminating
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the need to downscale from 12 km to 4 km through WRF nesting.
However, WRF simulations driven by HRRR ICBC would still have biases
compared to observations, as noted in a previous study (Blaylock et al.,
2017). These biases could potentially be mitigated through the AICBC
method presented in this study.

For the smoke model evaluation methods developed in the study, the
probability of high PM; 5, which was not simulated in WRF-SFIRE, was
estimated by considering the wind bias along the smoke transport tra-
jectory. The RT method, which had the simplest physics assumptions,
independently considered the bias from wind direction and speed, and
corrected the biases by using rotation and translation separately. Since
the method considered the wind uncertainty during the smoke transport
by using observations from one meteorological monitor at current and
previous hours, the method could be applied in scenarios where only one
wind monitoring station provides data near the concentration monitor.
This contrasts with the equal time or equal distance backward/forward
trajectory methods, which require multiple wind monitoring stations to
estimate the spatial variation in wind bias. However, using the two-hour
wind bias to address the uncertainty during smoke transport is highly
simplified. It could underestimate the uncertainty when the transport
time is much longer and the wind spatial distribution variance is sig-
nificant. The equal time or equal distance backward/forward trajectory
methods considered the wind direction and speed bias simultaneously
by estimating the trajectories of smoke under simulated and observed
wind. Also, the transport time of the smoke was more accurately esti-
mated by using the observed wind with the backward trajectory, rather
than only considering the two-hour wind bias used in the RT method.
Additionally, the spatial variations associated with the observational
data used in backward trajectory calculation were addressed by the
standard deviation of wind from multiple monitors. The ETBFT method
estimated the uncertainties of smoke transport due to the wind bias, but
had limitations in mitigating the dilution or diffusion effects from the
wind speed bias. The EDBFT method was implemented as an alternative
to overcome such limitations in the ETBFT method, assuming that the
intensity of smoke diffusion was related to the smoke transport distance.
In this study, ETBFT slightly outperformed EDBFT, particularly in
capturing the concentration peak intensities at Trailer FS and USFS 1079
on March 3rd. Since the EDBFT used the backward trajectory distance to
decide the forward trajectory distance, the destination time had to be
rounded to match the simulation time resolution (i.e., 20 min in this
study) for extracting the modeled concentration at the estimated
pseudo-monitor location. In future studies, time interpolation of con-
centration could be considered to improve the implementation of the
EDBFT method.

Accurately estimating the spatiotemporal differences between
observed and simulated wind fields is critical for both the wind bias
reduction and smoke model evaluation methods implemented in this
study. However, the spatial sparsity of wind monitors introduces un-
certainty in estimating wind biases within the simulation domain,
thereby affecting the accuracy of these methods. To better understand
the uncertainties associated with our methods, we conducted data
withholding and sensitivity analyses for both wind bias reduction and
smoke model evaluation methods. In wind bias reduction methods, we
incorporated all available wind observations within the simulation
domain to improve the modeled wind fields. However, this approach
may lead to overestimated model performance because the same wind
observations are used for both model adjustment and evaluation, which
reduces the independence of the validation. To address this issue, we
applied a data withholding strategy to assess the effectiveness of the AN
and AICBC methods. Specifically, we withheld wind measurements from
the gpem station, which is located within the WRF-SFIRE simulation
domains for the March 2nd, 3rd, and 5th burns. The AN and AICBC
methods were then applied, and the simulation results were evaluated
using the withheld gpem wind data (Figure S27, Tables S8-S9).
Compared to the benchmark simulation (B) that does not use gpem data
either, the AN method improved wind direction simulation and showed
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slight improvement in wind speed, while the AICBC method improved
the simulation of both wind direction and wind speed, as indicated by
the Taylor diagrams (Figure S27). The AICBC method remained the most
effective, particularly in reducing wind speed bias, with the RMSE
decreasing from 1.9 m/s to 0.7 m/s at the gpem station. For smoke
model evaluation, recall that we quantified the uncertainty in predicted
concentrations due to biases in simulated winds and showed this un-
certainty as shaded areas in Figs. 5 and 6. When a concentration monitor
was not co-located with a wind monitor, we assumed that the wind bias
was the same as that of the nearest wind monitor. To evaluate the un-
certainty associated with this assumption, we alternatively estimated
the winds at concentration monitor locations using the inverse distance
weighted (IDW) method on surrounding wind observations
(Figures S28-S30). Compared to the gray shaded area predicted by the
RT method using nearest-neighbor winds (Fig. 5), the RT method with
IDW-estimated winds (Figure S28) better captured the PMys5 peak
observed by Trailer FS at 18:00 UTC (13:00 local time) on March 3rd,
but missed the peaks at USFS 1078 on March 2nd, 18:30 UTC (13:30
local time), and at Trailer FS on March 5th, 20:30 UTC (15:30 local
time). For the ETBFT and EDBFT methods, using nearest-neighbor winds
or IDW-estimated winds showed similar performance in capturing PMy 5
peaks. As indicated by the black dashed lines, the ETBFT method using
IDW-estimated winds shows better performance on predicting the PMs 5
peak onset time at USFS 1078 on March 2nd, but performed worse on
predicting the peak onset time at Trailer FS on March 3rd (Figure S29
and Fig. 6a). The EDBFT method using IDW-estimated winds slightly
overestimated the magnitude of 18:30 UTC (13:30 local time) PMy 5
peak at USFS 1078 on March 2nd (Figure S30 and Fig. 6b), as indicated
by the black dashed lines. Overall, we found that the RT method was
more sensitive to the choice of wind input than the ETBFT or EDBFT
methods. Specifically, the RT method showed larger discrepancies be-
tween results using IDW-estimated winds and those using nearest-
neighbor winds. This sensitivity arises because RT relies on a single
wind observation site to estimate discrepancies in smoke transport tra-
jectories under observed and simulated wind fields, whereas the ETBFT
and EDBFT methods aggregate information from all available monitors
in the simulation domain.

All simulation cases discussed in the study involve one burn unit
(March 2nd and March 3rd) or two burn units next to each other (March
5th). In the discussions on smoke model evaluation methods, we
simplified the smoke source to the centroid of the burn units. The RT
method, which requires a center for the rotation operation, cannot
simply be migrated to fire events when the burn units are far away from
each other. The ETBFT and EDBFT methods, which use backward tra-
jectories to identify the sources, can still be implemented under such
situations. Additionally, the study mainly focused on uncertain wind
impacts on ground-level concentration with limited discussion on fire
emissions. However, fire emissions can play an important role in influ-
encing surface concentration simulations in both fire behavior and
chemical transport models. In fire behavior models, fire emissions’ in-
tensity and time profile can be affected by emission factors, fuel mois-
ture, fuel type, and fuel load. Emission factors directly determine
emissions’ intensity but have a limited influence on fire behavior and
therefore do not strongly affect the emission time profile. Based on the
previous study (Prichard et al., 2020), the coefficient of variation
(standard deviation divided by the mean) for prescribed fire PMy g
emission factors in the Southeastern U.S. ranges from 6 % to 63 %,
depending on the fuel type, highlighting substantial uncertainty in
current emission factors. Fuel moisture, fuel type, and fuel load affect
fire propagation, which in turn affects emissions in fire behavior models.
Fuel moisture was largely overestimated in WRF-SFIRE on March 5th,
and the PMj 5 peak at Trailer FS from 18:00 to 20:00 UTC (13:00 to
15:00 local time) on March 5th cannot be captured by either wind bias
reduction or smoke evaluation methods. We applied WRF-SFIRE with
reduced constant fuel moisture contents (of 11 %), and the emissions
were more intense at the beginning time due to the faster fire spread rate
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(Figure S24). The smoke (PMys) had a broader impact region
(Figure S25) and a higher probability of hitting the monitor under wind
uncertainty consideration with the ETBFT method (Figure S26). A pre-
vious study (Farguell et al., 2024) had suggested that fuel moisture
reanalysis data, which incorporates RAWS fuel moisture observations
with models, could improve fuel moisture simulation in WRF-SFIRE.
Since the dataset was limited to California, it could not be used here;
however, there is a potential benefit in adapting such reanalysis data
with broader spatial coverage. We also conducted sensitivity analyses on
the influence of fuel type and fuel load for the burn on March 5th
(Table S10, Figures S31 and S32). For the fuel type sensitivity analysis,
we replaced the heterogeneous fuel types derived from the 30-meter
resolution LANDFIRE product with a single, uniform fuel type, either
hardwood/long needle pine timber litter or tall grass. These two fuel
types are dominant within the burn unit, accounting for 30 % and 27 %
of the land cover, respectively. The burned area and emission time
profiles are highly impacted by the fuel type. Fire propagated more
quickly across tall grass and more slowly through hardwood litter. As a
result, the simulation using tall grass as the fuel type shows an earlier
PM, 5 peak and higher maximum concentrations at the affected monitor
location. In contrast, the hardwood fuel simulation showed a delayed
PM, 5 peak with lower intensity. For the fuel load sensitivity analysis, we
conducted two additional simulations in which the fuel load for each
fuel type was decreased or increased by 50 % compared to its value in
the NB simulation. Fuel load influenced both burned area and emission
time profiles. However, the burned area was relatively insensitive to
changes in fuel load. Emissions are directly affected by fuel load, as they
are typically calculated by the product of burned area, the consumed
fraction of fuel load, and emission factors. As expected, the emissions are
higher with increased fuel load and lower with decreased fuel load. The
PM, 5 concentrations from simulations with decreased or increased fuel
load show similar temporal patterns, with all simulations reaching peak
PM; 5 levels around 22:00 UTC (17:00 local time). The increased fuel
load simulation produced the highest peak PM, s concentration, fol-
lowed by NB, and then the decreased fuel load simulation. These dif-
ferences in concentration levels can be explained by the emissions.
When the burned area remains similar, a higher fuel load results in
higher emissions and thus higher PMj 5 concentrations. Another limi-
tation of the study is that we only considered the uncertain surface wind
simulation impacts on ground-level concentrations. However, the wind
uncertainty in the mixing layer at higher elevations could also affect the
ground-level smoke concentrations.

Data availability
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