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A B S T R A C T

In wildland fires, wind affects fire propagation, emission intensity, and smoke transport; therefore, uncertainties 
in wind simulations can critically impact PM2.5 concentration produced by coupled fire-atmosphere models or 
chemical transport models. These uncertainties must be addressed prior to assessing other parameters that may 
affect model-predicted PM2.5 concentrations through comparisons with observations. This study simulated 
prescribed fire events with accurate ignition pattern design and high spatial-temporal resolutions using the 
coupled fire-atmosphere model WRF-SFIRE. We designed, implemented, and evaluated various wind bias 
reduction and smoke model evaluation methods to quantitatively capture the impacts of wind uncertainty on 
simulated smoke concentrations. For the wind bias reduction methods, incorporating wind observations into 
initial and boundary conditions proved effective in reducing bias, especially for wind speed. The suggested 
method resulted in RMSE values of 63 degrees for wind direction and 0.5 m/s for wind speed, lower than the 
standard WRF nudging benchmark’s 71 degrees and 1.5 m/s, respectively. This improvement in wind simulation 
accuracy enhanced the smoke simulation performance, successfully identifying 5 out of 8 detected PM2.5 peaks 
(≥ 35 μg/m3) missed in the benchmark WRF simulation using nudging. Among smoke model evaluation 
methods, which are post-analysis algorithms on the numerical modeling results, the equal time backward/for
ward trajectory method was the most effective approach. It successfully captured 7 PM2.5 peaks, which were not 
well simulated in the nudging benchmark. These smoke evaluation methods estimated uncertainty in smoke 
concentration by considering the simulated wind bias and demonstrated that the smoke concentration simulation 
is highly sensitive to the wind bias from the wind simulation. This study is unique in suggesting novel solutions to 
improving modeled wind field data and creative approaches to post-analysis of smoke transport simulations.

1. Introduction

Wildfires, which are unplanned and uncontrolled vegetation-burning 
events, have adverse effects on human health and wealth. In recent 
years, wildfire intensity and frequency have increased in the United 
States (Jaffe et al., 2020; Dennison et al., 2014), and the trend is ex
pected to continue due to global warming (Liu et al., 2013; Diffenbaugh 
et al., 2021; Jolly et al., 2015; Burke et al., 2023). Prescribed fires are 
controlled, typically low(er)-intensity burns proposed as an effective 

land management strategy to decrease fuel load, promote ecosystem 
health, and reduce wildfire damage. However, both wildfire and pre
scribed fire degrade the air quality since a significant amount of air 
pollutants, such as particulate matter (PM), volatile organic compound 
(VOC), and nitric oxide and nitrogen dioxide (NOx), are emitted during 
both flaming and smoldering phases of combustion (Prichard et al., 
2020). To assess the air quality impacts induced by wildland fires, which 
are critical for public health studies and policy making, numerical 
models such as fire behavior models and chemical transport models are 
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implemented to provide spatial-temporal smoke predictions (Chen et al., 
2021; Matz et al., 2020). Fire and smoke simulations are also essential 
for fire management, helping fire managers make decisions about pre
scribed fires and plan experimental field studies (Kochanski et al., 2018).

WRF-SFIRE (Mandel et al., 2014; Mandel et al., 2011) is a fire 
behavior model incorporated in Weather Research and Forecasting 
Model (WRF) (Skamarock et al., 2019), which simulates fire propagation 
and smoke transport. The chemistry mechanism can also be considered 
by coupling with WRF-Chem (Kochanski et al., 2016). Unlike typical 
chemical transport models, such as Community Multiscale Air Quality 
Modeling (CMAQ) (Byun and Schere, 2006) or Comprehensive Air 
Quality Model with Extensions (CAMx) (Emery et al., 2024), which 
utilize the pre-processed meteorological fields and fire emissions, the 
WRF-SFIRE considers the coupling effects between atmosphere and fire 
(Mandel et al., 2011; Beer, 1991). The model simulates fire-modified 
meteorology and fire propagation under specific meteorological condi
tions. The emissions and vertical plume distribution due to pyro
convection are calculated online based on simulated local meteorology 
and fire behavior. Previous studies showed that the WRF-SFIRE could be 
conducted to simulate the fire propagation and air quality impacts for 
both wildfires (Kumar et al., 2024; Lu et al., 2012; Kochanski et al., 
2019; Mallia et al., 2020) and prescribed fires (Mallia et al., 2020; Mallia 
et al., 2018) under desired ignition patterns.

Emission estimations and meteorology are the fundamental factors 
impacting air quality simulations and primary sources of uncertainties. 
Many studies focused on the impact of emission uncertainty on air 
quality modeling, particularly in long-term and large-scale simulations 
(Tian et al., 2009; Carter et al., 2019; Su et al., 2023). For instance, 
Carter et al. (Carter et al., 2019) simulated black carbon and organic 
carbon concentrations using different fire emission inventories, 
including Global Fire Emissions Database (GFEDv4s) (Giglio et al., 
2013), Fire Inventory from NCAR (FINNv1.5) (Wiedinmyer et al., 2011), 
Quick Fire Emissions Dataset (QFEDv2.4) (Koster et al., 2015), and 
Global Fire Assimilation System (GFASv1.2) (Kaiser et al., 2012), over 
North America from 2004 to 2016. The uncertainty in the fire emissions 
could lead to 0.5 to 1.6 μg/m3 differences in annual 
population-weighted PM2.5. Liu et al. (Liu et al., 2020) conducted an 
adjoint monthly GEOS-Chem simulation for the Indonesia region with 
different fire emission inventories, including GFEDv4s, FINNv1.5, 
GFASv1.2, QFEDv2.5r1, and Fire Energetics and Emissions Research 
(FEERv1.0-G1.2) (Ellison et al., 2014) from 2003 to 2016. Although 
smoke simulations using different fire inventories were correlated 
(correlation ranging from 0.64 to 0.84), the magnitude of mean smoke 
PM2.5 during the burning season (July to October) varied across in
ventories by >20 μg/m3 (>500 %). In these studies, the effects of het
erogeneous meteorological conditions, like wind direction, tend to 
average out and become less important compared to the regional high 
spatial-temporal simulations.

Meteorological conditions, especially winds, are essential in hourly 
(sub-hourly) small/smaller-domain fire simulations and are rarely 
addressed. Li et al. (Li et al., 2020) offered a powerful analysis quanti
fying the orders of magnitude differences in smoke modeling results due 
to an ensemble of parameter variations, one of which is the meteoro
logical datasets. Smoke dispersion paths were strikingly different be
tween simulations using the North American Model (NAM) (NCAR 
2015), the North American Regional Reanalysis (NARR) (NCAR 2005), 
and the Global Data Assimilation System (GDAS) (NCAR 2015) meteo
rological datasets (see their Fig. 5). Potter et al. (Potter et al., 2023) 
discussed how measured and modeled winds can be quite different, a 
finding also reported by some previous studies (Kumar et al., 2024; El 
Asmar et al., 2024). The discrepancies between modeled and measured 
winds arise from factors such as model averaging (spatial and temporal), 
model physics (e.g., mass conservation), and measurement technology, 
including how the measured data are averaged/quantified. Model wind 
data are an average representative value for the grid cell and thus are not 
necessarily representative of the measured winds at a point in the grid 

cell. Measured winds change much more frequently than modeled and 
include gusts that the modeling system does not capture. Thus, modeled 
data tend to be much smoother and do not have the fluctuations present 
in measurements. Miller et al. (Miller et al., 2019) conducted a detailed 
comparison of modeled and measured winds during smoke intrusions in 
central Oregon and found that daytime mean wind error was approxi
mately 40 degrees, and at night, the error went up to approximately 80 
degrees. The meteorological model also tended to overestimate wind 
speeds. These variabilities have dramatic effects on smoke transport, 
and these studies highlight the critical importance wind plays in smoke 
dispersion modeling and the nuances to be aware of with both modeled 
and measured wind data. Large questions remain about how to account 
for or correct meteorological wind fields to improve smoke transport 
modeling.

Additionally, in fire-atmosphere models, fire propagation, emission, 
and smoke transport are all interconnected, highlighting the importance 
of an accurate representation of winds. Unfortunately, very few studies 
have discussed the impact of wind uncertainty on concentration simu
lations with traditional chemical transport models or coupled fire- 
atmosphere models. Yang et al. (Yang et al., 2011) discussed the 
impact of wind on concentration uncertainties by using trajectory 
models with different meteorological datasets. The forward trajectory 
results indicated that the smoke-impacted region had significant dis
crepancies under different meteorology inputs. However, the study did 
not quantitatively show the wind impacts on the concentration uncer
tainty. Menendez and coauthors conducted a sensitivity analysis on 
wind impacts for CMAQ simulations (Garcia-Menendez et al., 2013) by 
applying body-solid rotations to adjust wind direction by ± 5◦, ±10◦

and ±30◦, and scaling wind speed by ± 10 %, ± 20 % and ± 30 % 
individually in the Meteorology-Chemistry Interface Processor (MCIP) 
(Byun et al., 1999), which provides the meteorological inputs for the 
CMAQ model. Then, the study simulated the concentration using CMAQ 
under these 12 perturbed wind fields to quantitatively demonstrate the 
impact of wind on concentration levels. This method, although prom
ising, cannot be directly used for the coupled fire-atmosphere models, 
which simulate the wind along with the fire simulation instead of using 
pre-processed meteorological conditions. Additionally, the study did not 
discuss how to mitigate the wind bias using the method or consider the 
wind bias when comparing the concentration simulations with obser
vational data.

This study consists of two parts. The first part examined various wind 
bias reduction methods aimed at minimizing wind bias in meteorolog
ical simulations. These methods include data assimilation with wind 
observations or interpolated observation data, as well as adjustments to 
initial and boundary conditions. While these approaches reduce wind 
bias, they cannot eliminate it. As a result, residual wind bias must still be 
considered when evaluating smoke model performance. To address this, 
in the second part, we developed and implemented smoke model eval
uation methods to quantitatively assess wind impacts on smoke simu
lations. These methods account for differences between observed and 
simulated winds, providing a measure of uncertainty in the simulation 
results. The wind bias reduction and smoke model evaluation methods 
presented in this study are applicable to other chemical transport 
models, such as CMAQ and WRF-Chem, for fire-related case studies.

2. Measurements and modeling frameworks

2.1. Prescribed fires and measurements

In this study, we focused on three prescribed burns conducted at Fort 
Stewart Army Base in eastern Georgia, United States, on March 2nd, 
March 3rd, and March 5th, 2022. The prescribed burn boundaries are 
shown in Fig. 1, and the location of Fort Stewart Army Base in Georgia is 
indicated in Figure S1. Burn units F6.4 and F6.3 were burned separately 
on March 2nd and March 3rd. Burn units E16.2 and E16.3 were burned 
together on March 5th. The prescribed burns were ignited using the 
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aerial ignition method, which utilized a helicopter to drop incendiary 
chemical-filled ping-pong balls. The helicopter’s Global Positioning 
System (GPS) recorded the incendiary objects’ drop positions. To pre
vent the fire from escaping out of the designed boundary, firebreaks 
were set before the prescribed burn was conducted. This was done by 
first burning the fuels along the boundaries for perimeter control. To 
measure the transported smoke and evaluate the modeling performance, 
we employed a mobile air quality monitoring trailer that included a 
tapered element oscillating microbalance (TEOM) (El Asmar et al., 
2024; El Asmar et al., 2025) (square symbol in Fig. 1), and two portable 
Met One Instruments Inc. Environmental Beta Attenuation Monitors 
(EBAM) (Instruments, 2022) USFS 1078 and USFS 1079 provided by US 
Forest Service (USFS) (shown as triangle and star symbols, respectively 
in Fig. 1) to collect PM2.5 concentration data during prescribed burns. 
The monitors were placed in Fort Stewart on March 2nd and 3rd to 
capture the smoke from F6.3 and F6.4 as it was transported by the 
westerly winds. Then, on March 5th, the monitors were relocated 
outside Fort Stewart to capture the smoke coming from E16.2 and E16.3 
under southeasterly winds. These monitors measure PM2.5 at a 1-minute 
internal sampling frequency, and we averaged the data to 1-hour. Since 
the relative humidity (RH) conditions affect EBAM PM2.5 performance 
(Schweizer et al., 2016; Zachariassen, 2003), especially at ambient RH 
levels greater than 65 %, we excluded EBAM PM2.5 measurements 
collected during periods when RH exceeded this threshold before 
computing the hourly averages. We collected wind measurements at a 
2-m height from Remote Automatic Weather Stations (RAWS) monitors 
(Center, 2008) located in or near Fort Stewart, including Glisson’s Pond 
(ggli), Lawson (glaw), Midway (gmid), Taylor’s Creek (gtay), Pembroke 
(gpem), and Richmond Hill (gric) (shown as circles in Fig. 1). The wind 

data from RAWS is collected in 10-minute mean values prior to data 
transmission (Zachariassen, 2003). The data we used were downloaded 
directly from the RAWS USA Climate Archive (DRI, 2024), which pro
vides wind data already averaged to 1-hour intervals. As indicated in the 
RAWS review report (Zachariassen, 2003), wind speed is truncated to 
whole numbers before transmission (e.g., 6.9 mph becomes 6.0), 
potentially underestimating values by up to ~1 mph (0.4 m/s). We also 
collected wind measurements from EBAM USFS 1079, which was 
equipped with a Met One Instruments anemometer model EX-034 
mounted on the EBAM tripod at a height of 1.5-m. The internal sam
pling frequency of the wind measurements is 1-minute, and the data 
were averaged to 1-hour. Since WRF uses 10-m wind for data assimila
tion and simulates the surface wind at 10-m, we used the log wind 
profile (Holmes, 2015) formula (shown in Text S1) to convert the 2-m 
wind measurements to 10-m wind. We used a surface roughness 
length of 0.03 m (Holmes et al., 2007) in the log wind profile formula, 
which corresponds to typical grassland conditions. Locations of mea
surement platforms are presented in Fig. 1.

2.2. Wind and PM2.5 simulations

First, we simulated meteorological conditions for the study using 
WRF version 4.2 (Skamarock et al., 2019). The simulation period was 
from March 1st at 0 UTC (February 28th at 19:00 local time) to March 
7th at 0 UTC (March 6th at 19:00 local time), which covered all the 
prescribed burning events. The simulation was started one day before 
the burns to spin up the model. The WRF model used one-way coupling 
and included three domains with 12 km, 4 km, and 1 km resolutions 
(Figure S2). The initial and boundary conditions for the outermost 12 

Fig. 1. Monitor locations, prescribed burned units, and WRF-SFIRE simulation domains. Measurements dates (MMDD) are given for the Trailer and USFS monitors. 
The red dots show the Fire Radiative Power (FRP) detections from the Fire Information for Resource Management System (FIRMS) (FIRMS, 2022), which includes 
active fire products from Terra MODIS, Aqua MODIS, Suomi-NPP VIIRS, and NOAA-20 VIIRS. The polygons aligned with the FRP detections are the prescribed 
burned units analyzed in this study.
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km domain came from the NAM 12 km model (NCAR 2015). The Na
tional Land Cover Database (NLCD) (Homer et al., 2012) was used to 
provide the static geographical data. In our benchmark simulations, we 
utilized the WRF model with and without data assimilation (nudging) 
(Reen, 2016), a standard approach for establishing meteorological 
conditions for air quality simulations. In this study, the data assimilation 
case utilized the grid nudging and observational nudging with National 
Centers for Environmental Prediction (NCEP) global surface and upper 
air observational weather data (NCAR 2004; NCAR 2004), deployed 
EBAM monitor measurements, and measurements from selected RAWS 
stations (parameters used for wind nudging are shown in Table S1).

Then, we used WRF-SFIRE (Mandel et al., 2011) (version 4.2) to 
simulate the fire evolution, plume rise, and smoke dispersion and 
analyze the impact of assimilated winds on fire and smoke dispersion 
simulations. WRF-SFIRE is a coupled-atmosphere model, which con
siders the interactions between the atmosphere and fire since they 
mutually influence each other during the fire spread. The fire spread 
rates in WRF-SFIRE are calculated by the Rothermel formula 
(Rothermel, 1972). The formula estimates the rate of spread of the 
surface fire’s flaming front based on fuel types, fuel moisture, slope, and 
wind speed. An external 1 km weather simulation performed with WRF 
provided the meteorological initial and boundary conditions. The 
WRF-SFIRE model includes a fuel moisture component that is driven by 
the simulated weather fields (Mandel et al., 2014; Vejmelka et al., 
2016). This integration provides real-time fuel moisture data essential 
for determining the spread rate of fires. Since the WRF-SFIRE model 
requires high spatial resolution for simulating fire spread under het
erogeneous fuel conditions, we used a 200 m atmospheric resolution 
with a subgrid ratio of 10, resulting in a fire model resolution of 20 m. A 
3D scale-adaptive turbulent kinetic energy scheme (Zhang et al., 2018) 
is conducted for the 200 m domain to resolve the “gray zone” issue 
(Honnert et al., 2020) in turbulence, where the grid resolution is too fine 
for traditional large-scale modeling but too coarse for resolving 
small-scale turbulence. The 30 m-resolution LANDFIRE product pro
vided the elevation data and 13 Anderson fire behavior fuel type data 
(Department of the Interior, G.S., and U.S. Department of Agriculture. 
LANDFIRE 2016). For simulating the PM2.5 concentrations, we utilized 
the PM2.5 inert tracer in WRF-SFIRE, assuming the secondary PM2.5 
formation would be negligible since the monitor location was near the 
burn units, but this may underestimate PM2.5 mass concentration during 
photochemically active periods and when smoke ages beyond 1 h (El 
Asmar et al., 2025). We designed two different simulation domains, both 
with 145 west-east by 140 south-north grid points, as shown in Fig. 1, to 
capture the smoke trajectories. The black frame shows the fire simula
tion domain on March 2nd and March 3rd. The red frame shows the 
simulation domain for the March 5th prescribed fire. We set the emission 
factor for each fuel type based on the Smoke Emission Reference 
Application (SERA) (Prichard et al., 2020) (Table S2). The aerial igni
tions during the Fort Stewart burns were represented in the model by 
initializing the fire arrival time (TIGN_G). The value of the fire arrival 
time variable was updated for each subgrid cell in the WRF-SFIRE input 
file according to GPS-recorded ignition time (ignition patterns are 
shown in Figures S3-S5). First, we identified the subgrid cells corre
sponding to each incendiary object’s drop position using the nearest grid 
match. Then, we assigned the drop timing of the incendiary object to the 
subgrid cell. We also removed the fuel outside the fire boundaries in the 
input to avoid the fire spreading out of the boundaries (applied fuel 
types and elevation are shown in Figures S6-S8). The simulated con
centration was compared with the measured PM2.5 to evaluate the 
model performance. The fuel moisture model was activated during the 
WRF-SFIRE simulations, and the ground fuel moisture content was 
initialized as zeros at the beginning of the simulation hour 0 UTC for 
each burn date.

3. Methods

In this study, we designed and implemented various methods to 
reduce the uncertainties in wind fields and to investigate the impacts of 
uncertain winds on smoke simulations related to prescribed fires 
(Table 1). First, two benchmark simulations, one without (B) and one 
with nudging (NB), were conducted. These benchmarks provided the 
meteorological initial and boundary conditions for the coupled fire- 
atmosphere model WRF-SFIRE, and they were used in measuring the 
performance of the new methods. The two categories of methods dis
cussed here are: i) wind bias reduction and ii) smoke model evaluation 
methods. The wind bias reduction methods include 1) adjusting the 
initial and boundary condition inputs to WRF-SFIRE (AICBC) and 2) 
augmenting the assimilation data set by interpolating observational data 
for nudging the WRF-SFIRE solution towards observations (AN). The 
smoke model evaluation methods are based on statistical analysis after 
the WRF-SFIRE simulations, including rotation and translation (RT), 
equal time backward/forward trajectory (ETBFT), and equal distance 
backward/forward trajectory (EDBFT) methods. All these methods were 
implemented to find the pseudo-monitor location, which is the projec
tion of the actual monitor location considering the uncertainties in 
simulated winds. For example, suppose the measured wind indicates 
that the smoke directly hit the monitor, but the bias in the modeled wind 
directs the smoke away from the monitor. The pseudo-monitor location 
in such a situation is directly downwind according to the simulated wind 
field. Instead of comparing the monitoring concentration with the 
simulated concentration at the actual monitor location, the smoke 
model evaluation method uses the simulated concentration at the 
pseudo-monitor location.

3.1. Methods for mitigating wind biases

The AICBC and AN methods, as wind bias reduction methods, are 
summarized in Table 1, and each is discussed in detail below.

3.1.1. Adjusted initial and boundary conditions (AICBC)
In this method, we adjusted the wind initial and boundary conditions 

(IC/BC) that are input to WRF-SFIRE by using wind observations. For 
this, we revised the wind field simulated by WRF over the parent domain 
to minimize the disparities between observed and modeled winds. First, 
we performed a scaling and solid-body rotation on the WRF wind field 

Table 1 
Method names and short descriptions.

Method 
Categories

Method Name Description

Benchmarks Benchmark (B) WRF-SFIRE with initial and 
boundary conditions (IC/BC) 
provided by 1-km resolution WRF

Nudging Benchmark 
(NB)

WRF-SFIRE with nudging and IC/ 
BC provided by 1-km resolution, 
nudged WRF

Wind Bias 
Reduction 
Methods

Adjusted Initial and 
Boundary Conditions 
(AICBC)

WRF-SFIRE with IC/BC from wind 
fields rotated and scaled according 
to wind direction and wind speed 
biases

Augmentation Nudging 
(AN)

WRF-SFIRE with nudging to 
observational data augmented by 
interpolation

Smoke Model 
Evaluation 
Methods

Rotation and 
Translation (RT)

Rotating and translating the 
monitor location according to 
wind biases to find evaluation 
locations

Equal Time Back/ 
forward Trajectory 
(ETBFT)

Computing backward and forward 
trajectories of equal time to find 
evaluation locations

Equal Distance Back/ 
forward Trajectory 
(EDBFT)

Computing backward and forward 
trajectories of equal distance to 
determine evaluation locations
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simulated over the 1-km resolution parent domain. The rotation degree 
and the scaling factor were calculated from the averaged wind direction 
bias and wind speed bias between the 1 km resolution WRF simulation 
and observations at meteorology stations (the process is described in 
more detail in Text S1 Adjusted Initial and Boundary Conditions Method 
section). Accordingly, the metgrid data, which has a combination of 
geography and meteorological data processed by WRF Pre-Processing 
System (WPS), are modified. Then, adjusted initial and boundary con
ditions for WRF-SFIRE were generated with the modified data.

3.1.2. Augmentation nudging (AN)
Observational nudging is a method to introduce artificial tendency 

terms in WRF simulations, which gradually nudge the model around the 
observation stations towards corresponding observations (Reen, 2016). 
However, for case studies involving prescribed fires, the observation 
stations are spatially sparse, as the study area is typically rural. Addi
tionally, since WRF-SFIRE is generally used with a high spatial resolu
tion (~200 m) for computational efficiency, the typical simulation 
domain is small, with limited observation monitors. Also, the nudging 
method, when using the default settings (Table S1), nudges the simu
lation with slight intensity in each time step to avoid inducing unreal
istic results. However, it cannot mitigate all the wind bias for a typical 
one-day prescribed fire event simulation. One possible mitigation 
method is to increase the nudging intensity by tuning the nudging pa
rameters, including the radius of influence and the nudging time scale, 
which was discussed in previous studies (Bowden et al., 2012; Spero 
et al., 2018). In this study, instead of tuning the nudging parameters, we 
enhanced the observational data through interpolation to address the 
challenge of insufficient monitoring data in small fire simulation do
mains by leveraging data from the parent domain’s monitors. First, we 
generated a 1-km resolution wind field by applying Kriging interpola
tion (Murphy, 2014; Oliver and Webster, 1990) to the observed u-wind 
and v-wind data from selected meteorological monitors. Then, we 
extracted the wind data from each grid cell of the 1-km resolution 
interpolated observational field and created an augmented observation 
dataset over the WRF-SFIRE domain. This dataset was then used as the 
observational nudging input to the WRF-SFIRE simulation (the process is 
described in more detail in Text S1 Augmentation Nudging Method 
section).

3.2. Methods for smoke model evaluation under uncertain winds

Since wind biases are commonly found in meteorological simula
tions, even when wind reduction methods are applied, they must still be 
considered in smoke model evaluation. Smoke model evaluation 
methods below quantify the uncertainty in smoke concentration caused 
by wind biases. These methods are summarized in Table 1 and discussed 
in detail below.

3.2.1. Rotation and translation method (RT)
The idea behind the rotation and translation method is similar to that 

of the AICBC method above. Instead of conducting solid-body rotation 
and scaling of the wind field to correct the initial and boundary condi
tions, we calculated pseudo-monitor locations using the wind bias. Also, 
unlike considering the spatially averaged wind bias across the simula
tion domain, as done in AICBC, this method focuses on the wind bias at 
the monitor location. Some concentration monitors are not paired with 
collocated wind-measuring anemometers. We assumed the wind bias at 
such concentration monitoring locations to be the same as that at the 
nearest wind monitor (the assignments are listed in Table S3). To miti
gate the effect of the wind direction bias on the trajectory of the smoke 
plume, we rotated the monitor location around the centroid of the burn 
unit by an angle equal to the hourly wind direction bias at the selected 
monitor (Figure S9 is the conceptual figure for explanation). To mitigate 
the effect of the wind speed bias on the smoke impact timing, we 
translated the monitor location by the distance that the smoke would 

travel due to the hourly wind speed bias. By combining these two pro
cesses, we calculated a pseudo-monitor location for a specific wind di
rection bias and wind speed bias at each hour (details on rotation and 
translation operations are provided in Text S1 Rotation and Translation 
Method section). However, the concentration field during a specific hour 
was not only affected by the wind field at that hour but also by the wind 
fields at previous hours, since all the wind vectors along the trajectory 
consecutively act on the smoke plume during its transport. To address 
this uncertainty, we spanned the ranges of wind direction and speed 
biases from the current and previous hours and calculated the pseudo- 
monitor locations for all the combinations in the range. For example, 
assuming wind direction and speed biases at hour t are σdir(t) and σspd(t), 
to estimate the wind uncertainty impacts on concentration at time t, we 
considered all the combinations of wind direction and speed biases in 
the following range: 

[min(σdir(t − 1), σdir(t)),max(σdir(t − 1), σdir(t))]

×
[
min

(
σspd(t − 1), σspd(t)

)
,max

(
σspd(t − 1), σspd(t)

)]
(1) 

where the symbol × represents the Cartesian product. We calculated the 
pseudo-monitor locations for each wind bias in this range and all 
possible concentrations at these pseudo-monitor locations.

3.2.2. Equal time (ETBFT) and equal distance (EDBFT) backward/ 
forward trajectory methods

The trajectory methods included backward and forward trajectory 
steps to find the pseudo-monitor location (Fig. 2). In the backward 
trajectory step, we started from the concentration monitor location and 
aimed at finding the source of measured smoke using the observed wind. 
Since there is no continuous spatial field of wind observations, the winds 
along the backward trajectory needed to be estimated. We assumed the 
observed winds along the trajectory had a Gaussian distribution, in 
which the mean value was the measured wind at the concentration 
monitor location (if there were no collocated wind measurements at the 
concentration monitor, we assigned the wind at the nearest wind 
measuring monitor as the mean) and the variance was the spatial vari
ance at the current hour among the wind monitors over the WRF-SFIRE 
domain. The trajectory continued until the closest location to the burn 
units. These locations were assumed to be the source of the smoke and 
used as the starting point for the forward trajectory step. To find the 
pseudo-monitor location, i.e., the projection of the monitor location 
under the simulated wind field, we calculated the forward trajectory 
with the wind field simulated by WRF-SFIRE.

The first method, equal time backward/forward trajectory (ETBFT), 
calculated the forward trajectory using the same period as the backward 
trajectory. This method would conceptually mitigate the impact of un
certainties in simulated winds on smoke transport. However, the dis
parities of smoke diffusion between reality and simulation due to the 
wind speed bias were not addressed by this method. For example, higher 
wind speed in the simulation compared to the real world would not only 
affect the timing of the smoke hitting the monitor but also dilute the 
intensity of the smoke. An alternative method, equal distance back
ward/forward trajectory (EDBFT), was implemented based on the 
assumption that the diffusion of the smoke was related to the transport 
distance. So, the forward trajectory for a period that resulted in the 
minimal difference between the smoke travel distance and the backward 
trajectory distance was used (technical and mathematical details of both 
methods are provided in Text S1).

To estimate the uncertainty in the backward trajectory step, we 
conducted a Monte Carlo simulation and created 1000 trajectory sam
ples assuming Gaussian distributions for u and v winds. For each back
ward trajectory sample, we calculated the forward trajectory to find a 
pseudo-monitor location and extracted the concentration at that loca
tion. The 1-sigma concentration range (which refers to the 16th and 
84th percentiles, or one standard deviation below and above the mean in 
a Gaussian distribution) at pseudo-monitor locations from all samples 
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covered the uncertainty in concentration caused by variable winds.

4. Results

In this section, we first present the wind and smoke simulation per
formances of the two benchmarks, B and NB. The WRF modeling results 
of these benchmarks at 1-km resolution are used by the wind bias 
reduction methods and provide IC/BC to smoke simulations at 200 m 
resolution. The effectiveness of wind bias reduction methods is evalu
ated by comparing them with NB at 200 m resolution. Additionally, we 
analyzed the smoke simulations of NB at 200 m resolution to illustrate 
the impacts of biased winds by using smoke model evaluation methods.

4.1. Benchmark wind and smoke simulations

We compared WRF simulated winds at 12 km, 4 km, and 1 km res
olutions with hourly surface wind measurements from Techniques 
Development Laboratory (TDL) (Commerce 1987), our measurements, 
and selected RAWS stations. The model performance was assessed using 
statistical metrics (formulas provided in Text S2) calculated between 
observed and simulated winds on March 2nd, March 3rd, and March 5th, 
which were prescribed burning dates. The simulation performance of 
surface wind direction and wind speed was evaluated under different 
statistical metrics (Tables S4 and S5), and the method for calculating 
wind speed and direction bias was detailed in Text S3. For the overall 
wind modeling performance, we used the Taylor diagram (Figure S10), 
which combines the model’s standard deviation, centered root mean 
square error (CRMSE), and correlation with observations in a single plot 
for model evaluation (Taylor, 2001). The distance between any model’s 
point and the observation indicates the performance of the model, with 
the performance being better with a shorter distance. For the wind di
rection and wind speed, the Taylor diagram indicated that NB and B 
showed a similar performance at 12 km and 4 km domains. NB showed 
improvements over B in wind simulations, especially on wind speed in 
the 1 km domain. However, the hourly wind simulation from NB in the 1 
km domain still showed poor performance, especially on wind speed 
simulations, where the correlation was 0.34. Although the simulated 
wind direction in the 1 km domain correlated with observations (r =
0.88), the root mean square error (RMSE) was 71 degrees. The subpar 
performance can partly be attributed to the NCEP meteorological data 
used for nudging, which was reported every three hours, whereas the 

model was evaluated using hourly wind measurements. When we used 
these 1 km resolution benchmark meteorological simulations to provide 
ICBCs, wind simulations in B and NB at 200 m resolution showed bias 
compared to observations during the prescribed burning periods. NB 
showed slight improvements in both wind direction and speed compared 
to B (Fig. 3). However, both benchmarks displayed wind direction 
RMSEs higher than 71 degrees (Table S6) and wind speed RMSEs higher 
than 1.5 m/s (Table S7). The relatively low accuracy of wind simulation 
raised concerns about the performance of smoke simulations. Under 
such biased wind simulations, B (Figure S11) and NB’s (Figure S12) 
smoke simulations failed to capture the PM2.5 peaks at Trailer on March 
3rd and March 5th and at USFS 1078 on March 2nd. Also, the PM2.5 peak 
at USFS 1079 on March 3rd was significantly underestimated in NB’s 
smoke simulations.

4.2. Wind and concentration performance under different wind bias 
reduction methods

The wind bias reduction methods were dedicated to decreasing the 
wind simulation bias in the fire simulation domain to mitigate the un
certain wind effects on concentration simulations. We used the statisti
cal metrics mentioned above (results are shown in Tables S6 and S7) and 
Taylor diagrams (Fig. 3) to evaluate wind bias reduction methods’ 
performance (Emery et al., 2017; Emery et al., 2001) during the fire 
simulation period, from the prescribed fire start time to the end of the 
UTC day (19:00 local time). Wind bias reduction methods used IC/BC 
from B or NB at 1-km resolution and were compared with NB at 200-m to 
understand their effectiveness. The Taylor diagram indicated that the 
AICBC method was the most effective method among all the simulations, 
especially for improving the wind speed simulation (Fig. 3). Here, we 
mainly focused on the AICBC method with nudging. The performance of 
AICBC without nudging can be found in Tables S6 and S7. The AICBC 
method resulted in 12 % and 64 % decreases in the RMSE for the wind 
direction and wind speed compared to the NB. The effectiveness of the 
AICBC method can be explained by the fact that the method forced the 
initial and boundary conditions and, consequently, the simulation is 
closer to the observations instead of propagating the wind bias from the 
parent domain to the study domain. The nudging process also improved 
the wind simulation performance. For the AN, the mean error (ME) and 
RMSE of the wind direction and wind speed were slightly improved 
compared to the NB; however, the benefits from nudging were not 

Fig. 2. Representation of equal time and equal distance backward/forward trajectory methods. The differences between the equal time trajectory (dark green) and 
the equal distance trajectory (light green) are in the forward trajectory step.
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Fig. 3. Taylor diagrams of wind direction and wind speed. The red dot represents the observation, and the other symbols represent different model simulations.

Fig. 4. Observed and simulated PM2.5 concentration (AICBC with nudging) at Trailer FS (TEOM), USFS 1079 (EBAM), and USFS 1078 (EBAM) monitors on three 
prescribed fire days. The red dots with the dashed line, blue solid line, and black solid line indicate the observation, NB simulation, and AICBC simulation, 
respectively. The orange dashed line marks the 35 μg/m3 PM2.5 level, which is the daily standard in the U.S. (Agency, U.E.P 2012).
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evident in this study. This could be because the nudging method nudged 
the model results to observation with a small perturbation term without 
tuning nudging parameters, and the correction intensity was kept low 
for each nudging step.

For the concentration evaluations, we compared the simulated con
centrations with the concentrations observed after the prescribed fire 
was conducted (Fig. 4, Figures S13-S14). With the AICBC method 
(Fig. 4), which had the best wind simulation performance among all the 
methods, the smoke concentration simulation performance was 
improved compared to NB (Figure S12, also shown as black lines in 
Fig. 4), especially for capturing the smoke at Trailer FS and USFS 1078 
on March 2nd, Trailer FS and USFS 1079 on March 3rd. On March 5th, 
the three monitors were close to each other, and the observations indi
cated that Trailer FS was more heavily impacted by the smoke compared 
to the other monitors around 19:30 UTC (14:30 local time), approxi
mately one and a half hours after the ignition start time. However, all the 
simulations, including AICBC, failed to capture the high PM2.5 peak at 
Trailer FS between 19:00 and 20:00 UTC (14:00 to 15:00 local time) on 
March 5th (an enlarged figure is shown in Figure S15). This can be 
explained by the slower fire spread rate and no obvious smoke in the 
model after the first 30 min of the fire (Figure S16). Although the model 
overestimated the wind speed, the fire propagated slowly since the fuel 
moisture was overestimated on March 5th (Figure S17). The almost 
doubled fuel moisture content in WRF-SFIRE on March 5th impeded the 
model from simulating the first PM2.5 peak at Trailer FS. The AICBC with 
nudging simulated the peak starting around 20:40 UTC (15:40 local 
time) while the smoke impact lasted until 22:20 UTC (17:20 local time), 
much longer than the observed smoke impact. This can be explained by 
the high wind direction bias after 21:00 UTC (16:00 local time), which 
transports the smoke more westerly in the simulation (Figure S15).

The wind field changed by different wind bias reduction methods 
affected not only the smoke transport but also the fire spread direction 
and rate (Figure S18), emission time profile (Figure S19), as well as 
plume height at monitoring locations (Figure S20). Since the AICBC 
method effectively reduced the simulated wind speed, the burned area 
and emission rates from AICBC cases were lower than those of the other 
simulation cases. However, the AICBC without nudging case had a 
relatively high burned area and emission rates at 17:20 UTC (12:20 local 
time) on March 2nd. Although the AICBC case had a lower wind speed, 
wind direction also influenced the rate of fire spread and emissions. 
Because of the heterogeneous fuel distribution, differences in wind di
rection among the simulations caused the fire to burn different fuel 
types. Burned area rates were higher when fire spread to more flam
mable fuels, and emission rates were elevated when the fire consumed 
fuels that burned more quickly or had higher emission factors. The time 
profile of plume heights was more sensitive to the wind simulation 
compared to burned area and emissions (Figure S20). The plume heights 
at monitoring locations were influenced not only by the heat emitted 
from the fire but also by smoke transport. The plume heights varied 
depending on the relative position within the smoke plume, such as near 
the edge or along the centerline.

4.3. Smoke model evaluation methods

Wind bias reduction methods can improve wind simulations, but 
cannot eliminate all biases. However, addressing wind bias is essential 
before comparing smoke model simulations with observations. To ac
count for the remaining wind bias, smoke model evaluation methods 
were implemented for properly assessing model performance. In smoke 
model evaluation methods, the temporal and spatial variation of wind 
bias must be addressed since the wind bias at the monitor (or assigned 
monitor) does not reflect the wind bias along the smoke trajectory. 
These methods considered the uncertainty of concentration due to the 
uncertain wind impacts, based on statistical sampling, which is repre
sented as the gray shaded area in the figures of this section. In this study, 
we applied the smoke model evaluation methods to the nudging 

benchmark case (NB). However, the same methods, as post-analysis 
algorithms, can be combined with other wind bias reduction methods 
to improve the simulation performance and investigate the uncertain 
wind impacts on concentrations.

4.3.1. Rotation and translation
The rotation and translation method assumed the simulated con

centration at the current hour would be affected mostly by the wind bias 
from the current hour and then the previous hour. If we applied the 
method considering only the current hour’s wind bias, the concentration 
corrected for such wind bias could be estimated, which was indicated as 
the black dashed line in Fig. 5. We estimated the concentration uncer
tainty range by considering the wind bias from the current and previous 
hours using Eq. (1), which is shown as the shaded area in Fig. 5. The 
corrected concentration (black dashed line in Fig. 5) and the concen
tration uncertainty range (gray shaded area in Fig. 5 indicating the 
possible range of concentrations) estimated by the rotation and trans
lation method showed a better performance compared to the nudging 
benchmark simulation (solid line in Fig. 5). The concentration uncer
tainty range indicated that it was possible to capture the observed PM2.5 
concentration peaks at Trailer FS during 17:00 to 19:00 UTC (12:00 to 
14:00 local time) on March 3rd and 20:00 to 21:00 UTC (15:00 to 16:00 
local time) on March 5th, at USFS 1079 during 19:00 to 21:00 UTC 
(14:00 to 16:00 local time) on March 2nd and 17:00 to 19:00 UTC (12:00 
to 14:00 local time) on March 3rd, and at USFS 1078 during 17:00 to 
20:00 UTC (12:00 to 15:00 local time) on March 2nd. However, the 
concentration uncertainty range had a lower concentration than the 
observations at Trailer FS on March 3rd. The peak timing at USFS 1078 
on March 2nd was earlier than observed. This can be partly explained by 
the overestimation of wind speed in the simulation. Since we conducted 
translation operations based on the transport distance difference due to 
current and previous hour wind speed biases, the disparities in peak 
timing could be reduced, but still existed.

To understand the sensitivity of simulated concentration to wind 
direction and wind speed, we conducted a sensitivity analysis using 
rotation and translation operations as follows. We conducted − 70 to 
+70 degrees perturbations on wind direction and 0 to 1.5 m/s pertur
bations on wind speed, which were the ranges suggested by the RMSE of 
NB (Tables S6 and S7). For each combination of wind direction and wind 
speed bias, we calculated the pseudo-monitor location for each monitor 
and extracted the concentration at that location. The sensitivity was 
calculated by taking the RMSEs between the simulated concentration 
time series at all pseudo-monitors and the corresponding observations 
(Figures S21-S23). The RMSE could exceed 80 μg/m3 under the wind 
speed and wind direction bias range we selected, since the biased wind 
direction or wind speed could switch the monitor from smoke-impacted 
to not-impacted and vice versa, which would induce large differences in 
the PM2.5 concentration.

4.3.2. Equal time and equal distance backward/forward trajectories
We used a similar convention as the RT method above; the uncer

tainty of concentration due to the wind bias was shown as the shaded 
area (Fig. 6), and the black dashed line indicated the concentration 
corrected by using the wind bias from the assigned meteorological 
monitor with the backward/forward trajectory methods. Since we esti
mated the uncertainty by a 1-sigma range of concentration intensity at 
pseudo-monitor locations rather than the maximum likelihood, the 
concentration corrected by the exact wind bias at the assigned monitor 
could be outside the range (for example, USFS 1078 on March 2nd in 
Fig. 6b). For the equal time backward/forward trajectory method 
(Fig. 6a), the likely concentrations (indicated by gray shaded area) 
covered the observed PM2.5 concentration peaks at Trailer FS from 17:00 
to 19:00 UTC (12:00 to 14:00 local time) on March 3rd, and the second 
peak from 20:00 to 21:00 UTC (15:00 to 16:00 local time) on March 5th, 
at USFS 1079 from 17:00 to 19:00 UTC (12:00 to 14:00 local time) on 
March 3rd, and at USFS 1078 on March 2nd from 17:00 to 20:00 UTC 

Z. Li et al.                                                                                                                                                                                                                                        Agricultural and Forest Meteorology 376 (2026) 110885 

8 



(12:00 to 15:00 local time). Also, the corrected PM2.5 concentration 
(dashed black line) was lower during 16:00 to 20:00 UTC (11:00 to 
15:00 local time) on March 2nd at Trailer FS and during 20:00 to 23:00 
UTC (15:00 to 18:00 local time) on March 5th at USFS 1078 compared to 
the NB simulation (solid lines), displaying reduced concentration bias. 
The high PM2.5 concentration at Trailer FS on March 3rd had a high 
probability of being captured by considering the wind bias, which was 
not captured in the RT method (Fig. 5). Additionally, the peak timing at 
USFS 1078 on March 2nd from the ETBFT method was closer to the 
measured smoke peak timing than the RT method. However, the shaded 
area in the ETBFT method suggested the probability of high PM2.5 at 
Trailer FS and USFS 1079 on March 2nd, which were not observed, 
while the RT method did not indicate such smoke peaks. The enlarged 
shaded areas with ETBFT can be explained by the higher spatial vari
ability of observed winds among the meteorological monitors. On that 
day, the USFS 1079 measured southwestern wind at 19:00 UTC (14:00 
local time) while the gpem site reported northwestern wind (shown as 
observed Trailer FS wind vector on March 2nd). The ETBFT method 
considered the spatial and temporal variability of wind bias by simu
lating the smoke trajectories, while the RT method only considered the 
temporal variability of the wind during smoke transport (current hour 
and the previous hour) without considering the spatial variability.

For the equal distance backward/forward trajectory method 
(Fig. 6b), the concentration uncertainty range also showed the proba
bility that the high PM2.5 peaks could be captured at Trailer FS from 
17:00 to 19:00 UTC (12:00 to 14:00 local time) on March 3rd, at USFS 
1079 from 17:00 to 19:00 UTC (12:00 to 14:00 local time) on March 3rd, 
and at USFS 1078 on March 2nd from 17:00 to 20:00 UTC (12:00 to 
15:00 local time). These two methods showed similar patterns since they 
conducted the same backward trajectory process to find the source of the 
smoke parcel. The difference was in the sampling of smoke along the 
forward trajectory. Both methods used trajectories calculated using the 
same simulated wind field, but they sampled concentrations at different 
times. The highest level of the shaded area in the EDBFT method was 
higher than the ETBFT method on March 5th for all three monitors. This 
was expected since the EDBFT method was designed to mitigate the 
dilution and diffusion effect due to the higher wind speed. The smoke 
was expected to be more concentrated with shorter transport distance 
due to less diffusion. However, the smoke concentration can be lower in 
EDBFT compared to ETBFT, as encountered on March 3rd at Trailer FS 
and USFS 1079. In ETBFT, the pseudo-monitors were located farther 
from the source because the forward trajectory distance, based on the 
overestimated wind speed from WRF, was longer than the backward 
trajectory distance. In contrast, EDBFT assumed equal forward and 

Fig. 5. Observed (red dots with dashed line), simulated (blue solid line), and corrected PM2.5 (black dashed line) at Trailer FS (TEOM), USFS 1079 (EBAM), and USFS 
1078 (EBAM) monitors on three prescribed fire days by using the RT method. The shaded area indicates the concentration uncertainty by considering the wind bias 
from the previous and current hours. The black and gray arrows at the top show the observed and modeled wind at the nearest meteorological monitor, respectively.
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Fig. 6. Observed (red dot with dashed line), simulated (blue solid line), and corrected PM2.5 (black dashed line) at TEOM monitor (Trailer FS), USFS 1079, and USFS 
1078 on three prescribed fire days by using the ETBFT method (a) and the EDBFT method (b). The shaded area indicates the concentration uncertainty by considering 
the wind bias uncertainty along the trajectory. The black and gray arrows indicate the observed wind and modeled wind at the assigned meteorological monitor, 
respectively.
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backward trajectory distances. Consequently, the higher plume rise near 
the source, caused by the elevation of fresh smoke with greater energy, 
leads to reduced surface concentrations at pseudo-monitors in EDBFT. 
This effect was particularly evident on March 3rd when these monitors 
were closer to the burn units than on other dates.

5. Discussion

The uncertainties from wind simulations highly impacted the PM2.5 
concentration field simulated by WRF-SFIRE. In this study, we showed 
that wind bias reduction methods can mitigate the wind simulation bias. 
Nudging to wind observations augmented through Kriging interpolation 
(i.e., the AN method) slightly improved the wind simulations; however, 
it did not improve the concentration simulations in the study cases 
(Figures S13). Although the nudging intensity could be increased by 
amplifying the magnitude of nudging artificial tendency terms in the 
settings, this was not done here since it may introduce unrealistic pat
terns in WRF simulations (Glisan et al., 2013). The AICBC method was 
the most effective method in reducing wind bias, particularly in 
addressing the overestimations of wind speed reported in many studies 
(Yu et al., 2022; Carvalho et al., 2014; Dzebre and Adaramola, 2020; 
Gholami et al., 2021; Jiménez and Dudhia, 2012; Pan et al., 2021; 
Carotenuto et al., 2020). Also, the smoke concentration simulation 
significantly improved with the winds simulated by the AICBC method. 
The improvements in concentration simulation could be partly 
explained by the reduced wind bias impacts on smoke transport, which 
was the main focus of this study. Moreover, the improved wind simu
lation also influenced the fire behavior simulation, such as the fire 
spread rate and direction, affecting the plume height, emission profile, 
and intensity (Figures S18-S20). These factors are critical for simulating 
smoke intensity, as higher fire spread rates, increased emissions, and/or 
lower plume heights can lead to higher ground-level smoke concentra
tions. The impacts of biased winds on these factors could be further 
investigated in future work, particularly if corresponding observations 
are available. Despite improving the wind simulation, the AICBC 
method still had limitations, and it could not eliminate all the wind bias 
at all monitors. In this method, we calculated an hourly bias by aver
aging all wind biases from all monitoring stations within the 1-km 
domain (WRF-SFIRE’s parent domain). Then, the initial and boundary 
conditions were adjusted based on the averaged bias. The uniform 
adjustment for the whole domain effectively improved the simulation 
when a systematic error exists, such as the wind speed overestimation. 
However, the wind bias still existed in the initial conditions at the 
observed monitor locations after the correction, since the wind bias from 
different observations varied. For instance, the wind speed ratios be
tween observations and WRF simulations were 0.25 and 0.11 at USFS 
1079 and gpem, respectively, at 20:00 UTC (15:00 local time) on March 
2nd. Since the AICBC method used the averaged wind bias, the initial 
conditions for wind speed at both monitoring locations were adjusted 
using the same scaling factor. The wind speed in the initial condition at 
gpem, although reduced, remains higher than the observations. To 
overcome such bottlenecks of the AICBC method, future studies could 
consider using wind fields generated through interpolation or data 
fusion (Chang et al., 2015; Wang et al., 2021) of the parent domain’s 
wind field to provide initial and boundary conditions for the target 
nested domain. Another approach would be to use a meteorological 
model with higher spatiotemporal resolution, such as the 
High-Resolution Rapid Refresh model (HRRR), with the AICBC method 
to improve the ICBC used in WRF-SFIRE simulations. HRRR provides 
3-km resolution meteorological data generated by a WRF simulation 
using data assimilation from various observational sources, including 
meteorological monitors, radar, satellite-based retrievals, and aircraft 
data (Benjamin et al., 2016). This plethora of data sources could 
potentially improve the simulation performance compared to the data 
assimilation configuration used in this study. Additionally, using HRRR 
to provide ICBC would reduce the computational costs by eliminating 

the need to downscale from 12 km to 4 km through WRF nesting. 
However, WRF simulations driven by HRRR ICBC would still have biases 
compared to observations, as noted in a previous study (Blaylock et al., 
2017). These biases could potentially be mitigated through the AICBC 
method presented in this study.

For the smoke model evaluation methods developed in the study, the 
probability of high PM2.5, which was not simulated in WRF-SFIRE, was 
estimated by considering the wind bias along the smoke transport tra
jectory. The RT method, which had the simplest physics assumptions, 
independently considered the bias from wind direction and speed, and 
corrected the biases by using rotation and translation separately. Since 
the method considered the wind uncertainty during the smoke transport 
by using observations from one meteorological monitor at current and 
previous hours, the method could be applied in scenarios where only one 
wind monitoring station provides data near the concentration monitor. 
This contrasts with the equal time or equal distance backward/forward 
trajectory methods, which require multiple wind monitoring stations to 
estimate the spatial variation in wind bias. However, using the two-hour 
wind bias to address the uncertainty during smoke transport is highly 
simplified. It could underestimate the uncertainty when the transport 
time is much longer and the wind spatial distribution variance is sig
nificant. The equal time or equal distance backward/forward trajectory 
methods considered the wind direction and speed bias simultaneously 
by estimating the trajectories of smoke under simulated and observed 
wind. Also, the transport time of the smoke was more accurately esti
mated by using the observed wind with the backward trajectory, rather 
than only considering the two-hour wind bias used in the RT method. 
Additionally, the spatial variations associated with the observational 
data used in backward trajectory calculation were addressed by the 
standard deviation of wind from multiple monitors. The ETBFT method 
estimated the uncertainties of smoke transport due to the wind bias, but 
had limitations in mitigating the dilution or diffusion effects from the 
wind speed bias. The EDBFT method was implemented as an alternative 
to overcome such limitations in the ETBFT method, assuming that the 
intensity of smoke diffusion was related to the smoke transport distance. 
In this study, ETBFT slightly outperformed EDBFT, particularly in 
capturing the concentration peak intensities at Trailer FS and USFS 1079 
on March 3rd. Since the EDBFT used the backward trajectory distance to 
decide the forward trajectory distance, the destination time had to be 
rounded to match the simulation time resolution (i.e., 20 min in this 
study) for extracting the modeled concentration at the estimated 
pseudo-monitor location. In future studies, time interpolation of con
centration could be considered to improve the implementation of the 
EDBFT method.

Accurately estimating the spatiotemporal differences between 
observed and simulated wind fields is critical for both the wind bias 
reduction and smoke model evaluation methods implemented in this 
study. However, the spatial sparsity of wind monitors introduces un
certainty in estimating wind biases within the simulation domain, 
thereby affecting the accuracy of these methods. To better understand 
the uncertainties associated with our methods, we conducted data 
withholding and sensitivity analyses for both wind bias reduction and 
smoke model evaluation methods. In wind bias reduction methods, we 
incorporated all available wind observations within the simulation 
domain to improve the modeled wind fields. However, this approach 
may lead to overestimated model performance because the same wind 
observations are used for both model adjustment and evaluation, which 
reduces the independence of the validation. To address this issue, we 
applied a data withholding strategy to assess the effectiveness of the AN 
and AICBC methods. Specifically, we withheld wind measurements from 
the gpem station, which is located within the WRF-SFIRE simulation 
domains for the March 2nd, 3rd, and 5th burns. The AN and AICBC 
methods were then applied, and the simulation results were evaluated 
using the withheld gpem wind data (Figure S27, Tables S8–S9). 
Compared to the benchmark simulation (B) that does not use gpem data 
either, the AN method improved wind direction simulation and showed 
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slight improvement in wind speed, while the AICBC method improved 
the simulation of both wind direction and wind speed, as indicated by 
the Taylor diagrams (Figure S27). The AICBC method remained the most 
effective, particularly in reducing wind speed bias, with the RMSE 
decreasing from 1.9 m/s to 0.7 m/s at the gpem station. For smoke 
model evaluation, recall that we quantified the uncertainty in predicted 
concentrations due to biases in simulated winds and showed this un
certainty as shaded areas in Figs. 5 and 6. When a concentration monitor 
was not co-located with a wind monitor, we assumed that the wind bias 
was the same as that of the nearest wind monitor. To evaluate the un
certainty associated with this assumption, we alternatively estimated 
the winds at concentration monitor locations using the inverse distance 
weighted (IDW) method on surrounding wind observations 
(Figures S28–S30). Compared to the gray shaded area predicted by the 
RT method using nearest-neighbor winds (Fig. 5), the RT method with 
IDW-estimated winds (Figure S28) better captured the PM2.5 peak 
observed by Trailer FS at 18:00 UTC (13:00 local time) on March 3rd, 
but missed the peaks at USFS 1078 on March 2nd, 18:30 UTC (13:30 
local time), and at Trailer FS on March 5th, 20:30 UTC (15:30 local 
time). For the ETBFT and EDBFT methods, using nearest-neighbor winds 
or IDW-estimated winds showed similar performance in capturing PM2.5 
peaks. As indicated by the black dashed lines, the ETBFT method using 
IDW-estimated winds shows better performance on predicting the PM2.5 
peak onset time at USFS 1078 on March 2nd, but performed worse on 
predicting the peak onset time at Trailer FS on March 3rd (Figure S29 
and Fig. 6a). The EDBFT method using IDW-estimated winds slightly 
overestimated the magnitude of 18:30 UTC (13:30 local time) PM2.5 
peak at USFS 1078 on March 2nd (Figure S30 and Fig. 6b), as indicated 
by the black dashed lines. Overall, we found that the RT method was 
more sensitive to the choice of wind input than the ETBFT or EDBFT 
methods. Specifically, the RT method showed larger discrepancies be
tween results using IDW-estimated winds and those using nearest- 
neighbor winds. This sensitivity arises because RT relies on a single 
wind observation site to estimate discrepancies in smoke transport tra
jectories under observed and simulated wind fields, whereas the ETBFT 
and EDBFT methods aggregate information from all available monitors 
in the simulation domain.

All simulation cases discussed in the study involve one burn unit 
(March 2nd and March 3rd) or two burn units next to each other (March 
5th). In the discussions on smoke model evaluation methods, we 
simplified the smoke source to the centroid of the burn units. The RT 
method, which requires a center for the rotation operation, cannot 
simply be migrated to fire events when the burn units are far away from 
each other. The ETBFT and EDBFT methods, which use backward tra
jectories to identify the sources, can still be implemented under such 
situations. Additionally, the study mainly focused on uncertain wind 
impacts on ground-level concentration with limited discussion on fire 
emissions. However, fire emissions can play an important role in influ
encing surface concentration simulations in both fire behavior and 
chemical transport models. In fire behavior models, fire emissions’ in
tensity and time profile can be affected by emission factors, fuel mois
ture, fuel type, and fuel load. Emission factors directly determine 
emissions’ intensity but have a limited influence on fire behavior and 
therefore do not strongly affect the emission time profile. Based on the 
previous study (Prichard et al., 2020), the coefficient of variation 
(standard deviation divided by the mean) for prescribed fire PM2.5 
emission factors in the Southeastern U.S. ranges from 6 % to 63 %, 
depending on the fuel type, highlighting substantial uncertainty in 
current emission factors. Fuel moisture, fuel type, and fuel load affect 
fire propagation, which in turn affects emissions in fire behavior models. 
Fuel moisture was largely overestimated in WRF-SFIRE on March 5th, 
and the PM2.5 peak at Trailer FS from 18:00 to 20:00 UTC (13:00 to 
15:00 local time) on March 5th cannot be captured by either wind bias 
reduction or smoke evaluation methods. We applied WRF-SFIRE with 
reduced constant fuel moisture contents (of 11 %), and the emissions 
were more intense at the beginning time due to the faster fire spread rate 

(Figure S24). The smoke (PM2.5) had a broader impact region 
(Figure S25) and a higher probability of hitting the monitor under wind 
uncertainty consideration with the ETBFT method (Figure S26). A pre
vious study (Farguell et al., 2024) had suggested that fuel moisture 
reanalysis data, which incorporates RAWS fuel moisture observations 
with models, could improve fuel moisture simulation in WRF-SFIRE. 
Since the dataset was limited to California, it could not be used here; 
however, there is a potential benefit in adapting such reanalysis data 
with broader spatial coverage. We also conducted sensitivity analyses on 
the influence of fuel type and fuel load for the burn on March 5th 
(Table S10, Figures S31 and S32). For the fuel type sensitivity analysis, 
we replaced the heterogeneous fuel types derived from the 30-meter 
resolution LANDFIRE product with a single, uniform fuel type, either 
hardwood/long needle pine timber litter or tall grass. These two fuel 
types are dominant within the burn unit, accounting for 30 % and 27 % 
of the land cover, respectively. The burned area and emission time 
profiles are highly impacted by the fuel type. Fire propagated more 
quickly across tall grass and more slowly through hardwood litter. As a 
result, the simulation using tall grass as the fuel type shows an earlier 
PM2.5 peak and higher maximum concentrations at the affected monitor 
location. In contrast, the hardwood fuel simulation showed a delayed 
PM2.5 peak with lower intensity. For the fuel load sensitivity analysis, we 
conducted two additional simulations in which the fuel load for each 
fuel type was decreased or increased by 50 % compared to its value in 
the NB simulation. Fuel load influenced both burned area and emission 
time profiles. However, the burned area was relatively insensitive to 
changes in fuel load. Emissions are directly affected by fuel load, as they 
are typically calculated by the product of burned area, the consumed 
fraction of fuel load, and emission factors. As expected, the emissions are 
higher with increased fuel load and lower with decreased fuel load. The 
PM2.5 concentrations from simulations with decreased or increased fuel 
load show similar temporal patterns, with all simulations reaching peak 
PM2.5 levels around 22:00 UTC (17:00 local time). The increased fuel 
load simulation produced the highest peak PM2.5 concentration, fol
lowed by NB, and then the decreased fuel load simulation. These dif
ferences in concentration levels can be explained by the emissions. 
When the burned area remains similar, a higher fuel load results in 
higher emissions and thus higher PM2.5 concentrations. Another limi
tation of the study is that we only considered the uncertain surface wind 
simulation impacts on ground-level concentrations. However, the wind 
uncertainty in the mixing layer at higher elevations could also affect the 
ground-level smoke concentrations.
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Jiménez, P.A., Dudhia, J., 2012. Improving the representation of resolved and 
unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. 
Climatol. 51, 300–316.

Jolly, W.M., Cochrane, M.A., Freeborn, P.H., Holden, Z.A., Brown, T.J., Williamson, G.J., 
Bowman, D.M., 2015. Climate-induced variations in global wildfire danger from 
1979 to 2013. Nat. Commun. 6, 7537.

Kaiser, J., Heil, A., Andreae, M., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., 
Razinger, M., Schultz, M., Suttie, M., 2012. Biomass burning emissions estimated 
with a global fire assimilation system based on observed fire radiative power. 
Biogeosciences. 9, 527–554.

Kochanski, A.K., Jenkins, M.A., Yedinak, K., Mandel, J., Beezley, J., Lamb, B., 2016. 
Toward an integrated system for fire, smoke and air quality simulations. Int. J. 
Wildland. Fire 25, 534–546. https://doi.org/10.1071/WF14074.

Kochanski, A.K., Fournier, A., Mandel, J., 2018. Experimental design of a prescribed burn 
instrumentation. Atmosphere (Basel) 9, 296.

Kochanski, A.K., Mallia, D.V., Fearon, M.G., Mandel, J., Souri, A.H., Brown, T., 2019. 
Modeling wildfire smoke feedback mechanisms using a coupled fire-atmosphere 
model with a radiatively active aerosol scheme. J. Geophys. Res. 124, 9099–9116. 
https://doi.org/10.1029/2019JD030558.

Koster, R.D.; Darmenov, A.S.; da Silva, A.M. The quick fire emissions dataset (QFED): 
documentation of versions 2.1, 2.2 and 2.4; 2015.

Z. Li et al.                                                                                                                                                                                                                                        Agricultural and Forest Meteorology 376 (2026) 110885 

13 

https://doi.org/10.1016/j.agrformet.2025.110885
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0017
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0081
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0081
https://doi.org/10.1175/JCLI-D-11-00167.1
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0006
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0006
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0006
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0015
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0015
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0015
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0042
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0042
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0042
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0042
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0025
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0025
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0025
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0025
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0072
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0072
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0072
https://doi.org/10.26023/9QFQ-P3MA-MB0E
https://doi.org/10.26023/9QFQ-P3MA-MB0E
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0078
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0078
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0078
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0008
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0008
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0008
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0008
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0002
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0002
http://www.landfire/viewer
http://www.landfire/viewer
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0004
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0004
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0004
https://raws.dri.edu/
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0073
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0073
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0073
https://doi.org/10.5194/acp-24-12749-2024
https://doi.org/10.5194/acp-24-12749-2024
https://doi.org/10.1021/acsestair.4c00231
https://doi.org/10.1021/acsestair.4c00231
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0032
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0032
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0032
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0016
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0016
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0016
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0083
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0083
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0041
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0041
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0041
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0027
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0027
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0027
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0070
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0070
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0070
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0050
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0049
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0052
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0052
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0059
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0059
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0059
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0001
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0001
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0001
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0075
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0075
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0075
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0005
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0005
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0005
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0030
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0030
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0030
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0030
https://doi.org/10.1071/WF14074
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0010
http://refhub.elsevier.com/S0168-1923(25)00504-0/sbref0010
https://doi.org/10.1029/2019JD030558
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