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Abstract: Prescribed burning is a major source of a fine particular matter, especially in the south-
eastern United States, and quantifying emissions from burning operations accurately is an integral
part of ascertaining air quality impacts. For instance, a critical factor in calculating fire emissions is
identifying fire activity information (e.g., location, date/time, fire type, and area burned) and prior
estimations of prescribed fire activity used for calculating emissions have either used burn permit
records or satellite-based remote sensing products. While burn permit records kept by state agencies
are a reliable source, they are not always available or readily accessible. Satellite-based remote
sensing products are currently used to fill the data gaps, especially in regional studies; however, they
cannot differentiate prescribed burns from the other types of fires. In this study, we developed novel
algorithms to distinguish prescribed burns from wildfires and agricultural burns in a satellite-derived
product, Fire INventory from NCAR (FINN). We matched and compared the burned areas from
permit records and FINN at various spatial scales: individual fire level, 4 km grid level, and state level.
The methods developed in this study are readily usable for differentiating burn type, matching and
comparing the burned area between two datasets at various resolutions, and estimating prescribed
burn emissions. The results showed that burned areas from permits and FINN have a weak correla-
tion at the individual fire level, while the correlation is much higher for the 4 km grid and state levels.
Since matching at the 4 km grid level showed a relatively higher correlation and chemical transport
models typically use grid-based emissions, we used the linear regression relationship between FINN
and permit burned areas at the grid level to adjust FINN burned areas. This adjustment resulted
in a reduction in FINN-burned areas by 34%. The adjusted burned area was then used as input
to the BlueSky Smoke Modeling Framework to provide long-term, three-dimensional prescribed
burning emissions for the southeastern United States. In this study, we also compared emissions
from different methods (FINN or BlueSky) and different data sources (adjusted FINN or permits) to
evaluate uncertainties of our emission estimation. The comparison results showed the impacts of the
burned area, method, and data source on prescribed burning emission estimations.

Keywords: biomass burning; wildland fire; prescribed burning emission; BlueSky; FINN

1. Introduction

The burned area from wildland fires in the United States has increased in recent
decades [1], with the frequency and severity of wildland fires continuing to grow under a
changing climate [2—4]. Moreover, the greenhouse gases emitted from fires have positive
feedback on global warming, leading to more pronounced and persistent climate-related
impacts [5]. Prescribed burning, which is a type of planned burning operation and falls
under the broader definition of wildland fires, is introduced to recreate the natural fire
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regimes for a healthy ecosystem and mitigate the risk of severe wildfires by reducing
hazardous fuels. Given that burns are planned and conducted by experts and emissions
are typically lower compared to wildfires [6], prescribed burning impacts may be less haz-
ardous. However, the effects of prescribed burning are particularly felt in the southeastern
United States, where prescribed burning has been traditionally used for land management
in both private and public lands [7,8].

Emissions from fires are typically estimated using burned area, fuel bed information
(e.g., type and amount of fuels), the efficiency of combustion, and emission factors [9].
Meteorological conditions such as moisture can also affect fire emissions [10-12]. The
information used to estimate fire emissions can be obtained from either ground-based fire
datasets or remote sensing techniques. Since ground-based fire datasets are not provided
in all locations, remote sensing techniques are typically used to provide fire information
for global or regional fire emission products. Based on remote sensing technology, several
satellite-derived products are employed to estimate emissions from wildland fires. The
Blended Polar Geo Biomass Burning Emissions Product (Blended-BBEP) [13], Global Fire
Emissions Database (GFED4s) [14], and Fire INventory from NCAR (FINN) [15,16] use
fire radiative power (FRP), which reflects the rate of thermal energy released from fires,
to estimate burned area. The fire emissions are then derived from the estimated burned
area. Products such as the Blended Global Biomass Burning Emissions Product version 3
(GBBEPx v3) [17] directly estimate the emission from fire radiative energy (FRE), which
measures the total amount of energy released during biomass combustion episodes. The
FRE is expected to have a linear relationship with fuel consumption [18]. Satellite-derived
products provide historical and real-time global fire emission estimates, though cloud cover
or resolution of the satellite imagery leads to uncertainty. Prescribed burning, which is
typically smaller in size and is designed to burn at a low intensity and/or as an understory
burn, is often missed by satellites [7]. Apart from satellite-derived products, burn permit
records provide prescribed fire information. Prescribed burning permits report the burned
area, location, and timing of the prescribed burning, and this information can be used
for emission estimation. Since the burned areas of fires are crucial in emission estimation
for permits or some satellite-derived products, comparisons between the burned area
from prescribed burning permits and satellite-derived products can inform the degree
of uncertainty of both methods. Koplitz et al. [19] compared the annual total burned
area from the National Interagency Fire Center (NIFC), which is a ground-based record,
with different satellite products in different regions of the United States. The results
indicate that burned areas from different products in the northeastern and northern United
States have a high correlation, while the southeastern and southern United States have
discrepancies due to the uncertainty in the burned area from small fires. Zeng et al. [20]
compared monthly burned area from a bottom-up database VISTA with Terra MODIS at
the state level, reporting correlation coefficients (R?) of 0.57 and 0.52, respectively, for all
fire types and prescribed burning, the latter of which is not separated from other fire types
in MODIS. Huang et al. [21] compared the actual burned area, which was obtained by
phone call surveys of land managers and prescribed burn contractors, with burned areas
from permits in Georgia, and found a high correlation (R? > 0.64) between the two. The
study also compared burned areas from permits, Blended-BBEP, and GFED4s in Georgia
and Florida at a relatively coarse resolution (state-based or county-based). The correlation
between satellite-derived and permit-reported burned areas is relatively low compared
to the correlation between surveyed land and permits provided to the burned area. To
enhance the accuracy of emissions estimation and burned area comparisons, it is important
to differentiate between burn types. However, this is often not possible with satellite data
as fires are typically detected by thermal energy, which makes it difficult to distinguish
between prescribed burns and wildfires. Despite this, some recent studies and emission
products have made progress in differentiating burn types. For instance, CFIRE [22] used a
combination of remote sensing data and permit records to provide burn-type information,
allowing for separate calculations of emissions based on different types of wildland fires.
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McClure [23] employed a spatiotemporal clustering algorithm to estimate the growth
pattern and lasting duration of wildfires, suggesting that it is possible to separate long-term
fires from prescribed burns. In this work, we differentiate prescribed burns from wildland
fires in FINN and compare the daily burned areas of prescribed burns from FINN to permits
under different spatial resolutions.

The ultimate goal of the research is to generate three-dimensional prescribed burning
emissions for chemical transport modeling. The study includes three parts. In the first
part, we developed a method to identify fire types by differentiating agricultural burning,
wildfires, and prescribed burning in FINN data. In the second part, we compared the
burned area for prescribed burning from FINN and permits by developing and applying
novel algorithms to match records from these two sources. A linear regression model was
employed to capture the relationship between the burned area from FINN and permits and
adjust the burned area of prescribed burning from FINN. In the third part, we estimated
the magnitude and vertical structure of emissions based on the adjusted burned area and
BlueSky Smoke Modeling Framework [24]. We compared the emissions magnitudes from
different methods (FINN and BlueSky) and from different data sources (adjusted FINN and
permits) to evaluate and understand the uncertainties in prescribed fire emissions. Then,
we used a plume rise model incorporated in BlueSky to generate vertical emission profiles,
which we combined with emission magnitudes to obtain three-dimensional prescribed
burning emissions. Our results and the following discussion highlight the various chal-
lenges associated with obtaining fire activity information suitable for estimating prescribed
burning emissions.

2. Materials and Methods
2.1. State-Prescribed Burning Permit Records

Prescribed burning permits, which contain some of the fire activity information needed
for fire emission estimates, were obtained from forestry agencies in Florida [25], South
Carolina [26], and Georgia [27]. Georgia permit data covered 2015-2020. Florida and South
Carolina permit data covered 2013-2020. Permit records in Florida and South Carolina
provided detailed information on prescribed burns including the latitude and longitude
of prescribed burn locations, burned area, and start time of prescribed burning, which
were used in the following analysis. The data had missing values and wrong locations
due to human error, so we removed the permits for which burned area was invalid (zero
or missing), or the location was out of the state boundary (less than 1.0%). For Georgia,
the latitude and longitude of prescribed burning were provided for a small portion of
the permits. Most locations of burns were provided by address. We conducted address
geocoding using Google Maps [28] for the permits that did not have latitude or longitude.
A total of 4.6% of the addresses of the permits could not be matched via geocoding since
the descriptions were ambiguous or erroneous; therefore, they were removed.

2.2. Fire INventory from NCAR (FINN)

Satellite-derived data is from FINN version 2.5 [15,16] in our study. FINN version
2.5 employed a spatial clustering algorithm to merge detected active fires since different
active fires from satellites can correspond to a single fire event. Additionally, the clustering
algorithm is utilized to combine fire detections from VIIRS and MODIS. FINN utilizes the
combined outputs to estimate the burned area [16]. Since VIIRS has a higher resolution
(375 m) than MODIS (1 km), FINN version 2.5 can detect fires with smaller burned areas [29].
This is particularly important for estimating emissions from prescribed burns, which are
typical for low intensity and/or occur as understory burns. In this study, we extract all
wildland fires from FINN version 2.5 that were detected in the southeastern United States
(as defined in Figure S25) from 2013 to 2020. The burned area of prescribed fires is separated
by a burn-type differentiation algorithm and compared with the burned area reported by
the permits.
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2.3. BlueSky Smoke Modeling Framework

The BlueSky Smoke Modeling Framework [24] provides multiple modeling options to
estimate fuel type, fuel load, fuel moisture, fuel consumption, emissions, and smoke height.
In this study, we employ BlueSky to estimate emissions and generate three-dimensional
emission data for chemical transport modeling. North American Mesoscale Forecast System
(NAM) 12 km [30] data is used to provide meteorological conditions for running BlueSky.
The Weather Research and Forecasting Model (WRF) [31], with a 12 km resolution, provides
meteorological conditions for the dates when NAM is missing. For BlueSky simulations, the
1 km Fuel Characteristic Classification System (FCCS) [32] provides detailed descriptions
of the fuel beds; the National Fire Danger Rating System (NFDRS) [33] estimates fuel
moisture (which affects fuel consumption); the CONSUME model [34] and Prichard-
O’Neill’s emission factors [35] are used to calculate consumption and emissions; and the
Fire Emission Production Simulator (FEPS) with Briggs plume top behaviors [36] estimates
the vertical structure of emissions. Neither prescribed burn permits nor FINN provides
a complete start hour or end hour of fires, so we assume that prescribed burning starts
at 11 am local time and ends before 6 pm local time since prescribed burning is typically
executed during the daytime, and there is a lag between when a fire crew starts work and
the burn begins. The duration of prescribed burning is estimated based on the burned area
(Table S1).

3. Methods
3.1. Burn-Type Differentiation
3.1.1. Agricultural Burning Identification

Agricultural burning includes planting preparation burning, crop residue burning,
and stubble burning. Fuel load and emission factors vary for different crop residues [37].
Agricultural burning has different emission patterns than prescribed burning due to the
differences in fuel type, fuel load, timing, and frequency, so it is important to differentiate
agricultural burns from prescribed burns. Georgia does not provide detailed burning
purposes in its permit records, and Florida does not have burn type data for 2017 and
2020. Satellite-derived FINN data does not differentiate burn types. To identify agricultural
burns, we utilize the National Land Cover Database (NLCD), which has a 30 m resolution
and is updated every 2 to 3 years [38]. We use 2013, 2016, and 2019 NLCD data to provide
the land cover type of fires for their following years (e.g., 2013 for 2013-2015). For each fire,
we assume a square shape with the same area as the burned area. The dominant land cover
type in the square is assumed to be the land cover type for the fire. For fires that happened
in areas classified as agriculture, we use agricultural burn estimation. Fires in open water
or barren land in FINN or permits are removed as they are likely the wrong coordinates in
FINN or permit records.

3.1.2. Wildfire Detection Algorithm

FINN data includes all fires detected by MODIS and VIIRS satellites, both for wildfires
and prescribed, while permits are only for prescribed burns. Therefore, matching FINN
data with permit data requires the removal of wildfires from FINN. In this research,
we focus on detecting larger wildfires. Prescribed burns typically start and end on the
same day, while wildfires can last multiple days, so we assume the fires that have more
than a one-day duration are wildfires. The duration of the fires can be calculated by
temporally tracking each fire in FINN. In other words, if FINN detects fires in the same
region (the distance between detected fires in the region is less than the selected clustering
distance) for consecutive days, the algorithm will mark all fires in that region during
the period as wildfires. Since wildfires can also spread over long distances in one day;,
FINN may identify a wildfire as several fires. This segregation problem could lead to
underestimations of the size of wildfires if we just track the wildfires temporally, so a
spatial clustering algorithm is applied to cluster FINN fire records that are close to each
other on the same day (Algorithm S1). In this spatial and temporal clustering algorithm,
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we use 1000 m as the spatial clustering distance and 800 m as the temporal clustering
distance for clustering the different FINN records into a wildfire based using the elbow
method [39]. The elbow method is widely used to determine the optimal number of
clusters in a clustering algorithm, and the elbow point of the clustering parameters (spatial
and/or temporal clustering distance) versus the number of clusters plot represents a
suitable balance between clustering accuracy and model complexity. As a result, we have
selected the elbow point as the optimal parameter setting for our clustering algorithm.
It is recognized that wildfires can happen under similar meteorological conditions as
prescribed burns, and some wildfires are small and extinguished in a short time, leading to
potential misclassification.

3.2. Matching FINN-Prescribed Burning Records with Permits

FINN is a satellite-derived product and estimates the burned area with the help of fire
radiative power detected from MODIS and VIIRS. The approach has several limitations
due to a lack of information on combustion completeness or fuel loading [40]. Additionally,
cloud cover and thick smoke due to large fires can affect radiative power detection by
satellites [41]. Permit records are reported when land managers plan to execute prescribed
burns and may not reflect the actual day a burn was accomplished. The burned area in
permit records is estimated by land managers. To evaluate the disparity between FINN
and permit estimates, we first removed agricultural burns from both datasets using an
agricultural identification algorithm. Then, we applied a wildfire detection algorithm to
remove any wildfires detected by FINN. Finally, we compared the prescribed burning
burned area in permits and FINN using three types of matching: statewide, fire-to-fire,
and grid-based.

3.2.1. Statewide Matching

For statewide matching, we calculate the daily total burned area in each state as
reported in the permits and calculated by FINN. The statewide daily total burned area
reflects the temporal pattern of prescribed burns in selected states. The spatial distribution
is not compared.

3.2.2. Fire-to-Fire Matching

Fire-to-fire matching has the highest spatial resolution and is essential for event-based
air quality modeling. We first match the FINN and permit records which have the nearest
distance to each other (Algorithm S2). The matching algorithm is based on distance alone,
leading to potential problems since the burn date of the permits can be different from the
actual burn date. It is also possible that the closest pair of FINN and permit records may
not be a match, as there is uncertainty in FINN and permit record location. Therefore, we
implement an algorithm that can relax the date or distance requirements (Algorithm S3). If
the difference in start date and distance between permits and FINN is less than specified
values, the burns of FINN and the permit are considered as candidates for being matched
pairs. Differences in burned area are included as an additional metric to select the best pair
among the candidate-matched pairs.

3.2.3. Grid-Based Burned Area Matching

As a third method, we generated the grid-based burned area by aggregating all the
burns in a grid cell and found the relationship between FINN and permits. The method
can partly solve the segmentation issues in FINN or the location uncertainties in FINN or
permits. Meanwhile, the chemical transport model computes air quality at a grid-based
resolution, so utilizing grid-based burned areas to generate grid-based emissions would
not have significant impacts on the results of the air quality model. Here, we use a 4 km
grid definition to generate grid-based, burned area fields. We conduct a sampling method
that uses the averaged value of 3 by 3 grids to represent the center value of the 3 by 3 grids
to address the potential for fires to occur near the grid boundaries.
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4. Results
4.1. Burn-Type Differentiation
4.1.1. Agricultural Burning Identification

We used Florida’s burn type data to evaluate the performance of the agricultural
burning identification algorithm. There were 95,364 records in Florida permits labeled
as agricultural burns, 65.35% of which were also identified as agricultural burns by the
algorithm. On the other hand, 70,157 permit records were labeled as agricultural burns by
the algorithm, of which 88.83% were validated by the burn type in permit records. The
results showed that there was good agreement between information obtained from permits
and the detection offered by the algorithm. Meanwhile, the algorithm underestimated the
number of agricultural burns in Florida.

4.1.2. Wildfire Detection

The wildfire algorithm needs two parameters: a spatial clustering distance and a
temporal clustering distance for aggregating FINN fires. We tuned these two parameters
separately and analyzed the spatial and temporal relationships in FINN data (Figure S1).
For spatial clustering, we clustered the fires observed on the same day. The clustering
started at around 250 m, which means FINN did not have any fires within less than 250 m
of each other. The number of clusters was increasing, and the rate of increase slowed down
after 1200 m. This result showed that most FINN records clustered in the 250 m to 1200 m
range. For temporal clustering, we clustered the fires which occurred closer than a specific
distance within a number of consecutive days, the duration of which was determined by
the algorithm itself. The “elbow” (the maximum curvature, also known as the knee, for
the temporal clustering curve in Figure S1) was around 800 m, which indicates that the
number of clusters increased intensively when the distance threshold was less than 800 m.
For wildfire detection, we clustered FINN fire records in space and time simultaneously by
using our wildfire detection algorithm. Clustering parameters were tuned at the same time,
and the elbow method [39] suggested 1000 m as the spatial clustering distance and 800 m as
the temporal clustering distance (Figure S2). For wildfire detection algorithm evaluation, we
used the number of matched wildfires between algorithm-detected wildfires and wildland
fire location full history (WFIGS [42]) records in the United States from 2014 to 2020. As a
matching method, we relaxed the distance (1500 m) and date (3 days) (Algorithm S3) by
considering the uncertainty of the wildfire’s reported location and discovery date. A total
of 3430 WFIGS records, whose burned area was higher than the minimum burned area of
algorithm-detected wildfires, were selected. The algorithm detected 22,140 wildfires based
on clustering FINN fires temporally and spatially, and 665 wildfires were identified by both
WEFIGS and our algorithm.

4.1.3. Burn Types in FINN and Permits

From the burn-type differentiation algorithm, we differentiated agricultural burns for
FINN and permits, and separated wildfires and prescribed burns for FINN. We estimated
the number of prescribed burns and burned areas for each southeastern state based on
FINN or permits (Figures S3, 1 and 2). In the southeastern United States, the primary
type of burn was prescribed burn, except in Arkansas where agricultural burns were
most prevalent. West Virginia and Virginia had the largest portion of wildfires among
the southeastern states. Half of Florida’s permit records were associated with agricultural
burning; however, prescribed burns accounted for a larger proportion of the burned area
(79.40%). The percentages of the burned area from prescribed burning in Georgia and
South Carolina were 79.00% and 88.70%, respectively.
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Percentage of Burned Area

VA GA NC
7.4%

129
0.1%

13.4%

mm  Agricultural burning
. Wildfire
mm Invalid
I Prescribed burning

Figure 1. Percentages of the burned area from FINN for different burn types in southeastern states
from FINN, 2013-2020. (State abbreviations: AL: Alabama; AR: Arkansas; GA: Georgia; FL: Florida;
KY: Kentucky; LA: Louisiana; MS: Mississippi; NC: North Carolina; SC: South Carolina; TN: Ten-
nessee; VA: Virginia; WV: West Virginia).

Percentage of Burned Area

SC FL GA
10.790-7% 05% 0.2%
20.2% 20.8%
laa o, 79.4% 79.0%
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SC FL GA
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22.1% 19.7%
5080.87%
-3% 80.0%

I Agricultural burning
Il Prescribed burning
Bl Invalid

Figure 2. Percentages of the burned area and number of records from permits for different burn types
in southeastern states. Georgia permits cover 2015-2020. Florida and South Carolina permits cover
2013-2020. (State abbreviations: GA: Georgia; FL: Florida; SC: South Carolina).
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4.2. Matching Prescribed Burning Records in FINN with Permits

We extracted prescribed burns from FINN and permits by the burn-type differentiation
algorithm. To understand the relationship between the burned area from FINN and
permits, we matched records at different spatial scales. Statewide matching showed a
relatively strong correlation (R? > 0.55) (Figures 3 and S4). Of note, the slope was higher
than 1 in Florida and was lower than 1 for South Carolina and Georgia for both linear
regression models, indicating that FINN underestimated the prescribed burned area in
Florida and overestimated it in Georgia and South Carolina. The positive intercept in
the linear regression model showed that FINN underestimated burned area when the
daily burned area was small. Additionally, the temporal pattern of prescribed burns from
FINN was consistent with permits (Figure S5). The peaks of the burned area were around
February to May for these three states.

y=1.09x+1387.23
slope: [1.06, 1.13]

2
S
S
IS]

60000

40000 4

20000

Permits Burned Area (Acres)

] — intercept: [1137.51, 1636.94] ,*
R?=0.55 N = 2660

T T
20000 40000

T
60000

SC GA
60000
e 35000 1 y=0.69x+322.40 d y=0.50x+644.92 d
Ve slope: [0.66, 0.71 P 7 slope: [0.57, 0.61] Vd
| — intercept: [237.00, 407.80 / 10 | — intercept: [458.78, §31.06 ’
s 30000 / 50000 /
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1 . - e
25000 40000 P
. . L
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w0 & 2 30000 - . 2

8 15000 8 0° 4
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80000 0 10000 20000 30000 0 10000 20000 30000 40000 50000 60000

FINN Burned Area (Acres)

Figure 3. Statewide matching between FINN and permits in Florida, South Carolina, and Georgia. A
linear regression with an intercept was conducted to fit the FINN burned area and permits burned
area. The numbers of matching days were indicated as N values. Uncertainty of linear regression
parameters was reported with a 95% confidence interval. Florida and South Carolina permits
cover 2013-2020. Georgia permits cover 2015-2020. (State abbreviations: GA: Georgia; FL: Florida;
SC: South Carolina).

Although the regression model performed well when we matched FINN and permits
in a coarse spatial scale, FINN and permits had poor correlation when we conducted a
fire-to-fire matching with or without distance and date relaxation (Algorithms S2 and S3).
For the nearest distance matching algorithm, we changed the selected distance threshold
and evaluated the matching performance by R? (Figure S6). The R? was less than 0.05
even when we only considered a distance of less than 500 m between the FINN record
and permit as a matched pair. The poor performance was partly due to uncertainty of
location and start date for the permits, especially in Georgia, where coordinates of burns
were estimated from ambiguous descriptions of addresses. Additionally, using distance
as the single metric for matching had high uncertainty when there was more than one fire
in FINN close to a permit record, and vice versa. Hence, we allowed some relaxations on
the start date and included differences in the burned area as another metric for matching
(Algorithm S3). By tuning the distance and start date, the matching performance was better
than the previous method but was still poor (Figure S7). The disparity of performance
between statewide matching and fire-to-fire matching showed the matching performance
was sensitive to spatial resolution.

The “segmentation” of fires where FINN may detect several fire points for a single
prescribed burning event, especially for larger burns, can help to explain why the matching
performance is sensitive to spatial resolution. The burned area detected by FINN should
be calculated by summing all burned areas from all fire points related to a specific fire
event. Grid-based burned area matching was considered since it can partly mitigate the
issues due to the segmentation of FINN and the uncertainty of FINN or permit locations.
Additionally, grid-based emissions, which are derived from the grid-based area, can still be
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utilized in chemical transport models. We aggregated point-wise FINN and permit records
to a 4 km grid definition. Burns that were detected from both FINN and permits at the
same date and the same grid were considered in the grid-based matching. Additionally,
a sampling method that used an average value of 3 by 3 grids to represent the value of
the center grid was employed to mitigate the impact of different grid definitions. The
grid-based burned areas from FINN and permits had a similar spatial pattern in Florida,
South Carolina, and Georgia (Figures 4 and S9). In Georgia, burns in some federal lands
were missing in permit records since federal burners were not required to apply to Georgia
Forestry Commission for permits; therefore, those lands were excluded from our analysis.
By comparing the matched grid-based burned area from FINN with permits, the R was
higher than 0.17, which was much better than the fire-to-fire matching (Figure 5). The slope
of the linear regression model was less than 1, which indicated FINN overestimated the
burned area of prescribed burns in these selected states. Additionally, a linear regression
with an intercept showed a positive offset, which means FINN underestimated the burned
area of prescribed burns for small fires. Since the performance differences between linear
regression with or without the intercept were subtle, we decided to apply the slope of the
linear regression model without the intercept (0.66 from Figure 5) as the scaling factor to
adjust the southeastern burned area from FINN. The adjusted burned area was utilized in
the BlueSky model to estimate prescribed burning emissions.

FINN Sum Permits Sum Burned Area (Acres)

10000

6000

I 4000

Lo

Figure 4. The total grid-based burned area from FINN and permit. FINN covered prescribed burns
from 2013 to 2020. Georgia permits included records from 2015 to 2020. South Carolina and Florida
permits included records from 2013 to 2020. Federal land boundaries are shown in blue. (State
abbreviations: GA: Georgia; FL: Florida; SC: South Carolina).

4.3. Prescribed Burning Emissions

FINN estimates fire emissions by burned area and emission factors for different land
cover types [43-47]. The data are provided as point emissions, and the heights of emissions
are estimated by different plume rise models or assumptions made in different chemical
transport models. For example, the Community Multiscale Air Quality Modeling System
(CMAQ) [48] uses the Briggs plume rise model [49] for point sources. WRF-Chem [50]
uses a 1D plume rise model proposed by Freitas et al. [51] to estimate the injection height
of emissions. The public version of the Goddard Earth Observing System-Chem (GEOS-
Chem) [52] assumes that all biomass-burning emissions are emitted into the atmospheric
boundary layer. On the other hand, BlueSky provides different options to estimate the
fuel type, fuel load, fuel moisture, and emission factors, which are all determinants of the
magnitude of emissions. As for the vertical structure of emissions, BlueSky uses the plume
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rise models that it incorporates such as FEPS [36], Briggs [49], and Sofiev [53]. FEPS with
Briggs plume top behaviors is utilized in this study to provide plume height for the three-
dimensional prescribed burning emissions. Fire activity information such as start time, end
time, location, and burned area is required. In this study, we used the original FINN burned
area to run BlueSky and compared the differences between emission estimation methods
from FINN and BlueSky. We also compared prescribed burning emissions from adjusted
FINN burned areas and permits to understand the discrepancies between satellite-derived
data and ground-based data, and evaluated the uncertainty associated with our estimations
of emissions from prescribed burning.

Grid-based burned area comparisons
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Figure 5. A linear regression between the FINN burned area and permitted burn area (unit: acres) of
prescribed burns matched over 4 km grid cells in Florida, Georgia, and South Carolina. The black
line is a 1:1 line and the red line is the regression line. Uncertainty of linear regression parameters
was reported with a 95% confidence interval.

4.3.1. Emission Comparison between FINN and BlueSky

The daily total emissions for the southeastern United States were compared between
FINN and BlueSky. A linear regression without an intercept was conducted to understand
the agreement between FINN and BlueSky emissions (Figure 6). Particulate matter and CO
estimated from the two different methods were highly correlated (R? = 0.96). PM, 5 and
PM; emissions from FINN were 74% and 96% of the respective BlueSky emissions. CO
emissions from FINN were 16% higher than BlueSky CO emissions.
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Figure 6. A comparison between estimated FINN and BlueSky daily total prescribed burning
emissions in the southeastern United States. The black line is a 1:1 line and the red line is the regression
line. Uncertainty of the linear regression parameters was reported with a 95% confidence interval.
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Although daily total emissions from FINN and BlueSky were consistent with each
other, a comparison of emissions for individual fires showed discrepancies. FINN statisti-
cally has higher CO and particulate matter emissions from a single fire event compared to
the BlueSky framework (Figure 7).
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Figure 7. A comparison between estimated FINN and BlueSky prescribed burning emissions for each
record in FINN. The black line is a 1:1 line and the red line is the regression line. Uncertainty of the
linear regression parameters was reported with a 95% confidence interval.

For regional chemical transport model simulations, typical grid-based emissions are
provided for the model. We compared the FINN and BlueSky emissions under a 4 km grid
definition to understand the differences in emission inputs (Figure 8). The R? between
estimated FINN and BlueSky emissions was higher than 0.55. FINN had higher CO and
lower PMj; 5 emissions than the BlueSky method, while PMj, emissions were close.
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Figure 8. A statewide comparison between estimated FINN and BlueSky prescribed burning emis-
sions under 4 km grid definition. The black line is a 1:1 line and the red line is the regression line.
Uncertainty of the linear regression parameters was reported with a 95% confidence interval.

4.3.2. Prescribed Burning Emissions from Adjusted FINN Burned Area and Permits

In this study, we developed two different sets of grid-based emissions. One is gen-
erated using burned area from permits (Figures S10-512), and the other is generated
employing the adjusted FINN burned area (Figures 513-515). The magnitude and vertical
structure of the emissions were estimated using BlueSky.

To understand the differences in daily budgets of the emissions from permit and
adjusted FINN burned areas, we compared the daily total emissions of prescribed burning
in these three states (Figure 9).



Remote Sens. 2023, 15, 2725

12 0of 19

Permit emission

Florida
CO (tons/day) PMj (tons/day) PM; 5 (tons/day)
y=1.80x 10 10000 y=1.79x y=181x
—— slope: [1.75, 1.85) —— slope: [1.74, 1.83] —— slope: [1.77, 1.86]
R2=047 R?=050 R2=0.54
. . 10
/ /
/ /
I, I'
l’ I'
l’ /’
I" 2>
-’ 107 2
&

0
0 10000 20000 30000 40000 50000 60000 70000 0 2000 4000 6000 8000 10000

4000 6000 8000
Adjusted FINN emission

South Carolina

CO (tons/day) PM; (tons/day) PM; 5 (tons/day)
14000 y=1.13¢ - = V=t.12x | y=1.13x
—— slope: [1.10, 1.16] —— slope: [1.09, 1.15] 2500 . —— slope: [1.09, 1.16] G
10¢ R?=062 19
=
A=)
I3
2 -6
£ 10° > 10 >
[ 2 2
= & &
£
=
@
o
107 107
0 2000 4000 6000 8000 10000 12000 14000 0 500 1000 1500 2000 2500
Adjusted FINN emission
Georgia
CO (tons/day) PM (tons/day) PM; s (tons/day)
= y=1.00x 5000 - » y=0.99x o y=0.98x
—— slope: [0.96, 1.03] 107 e —— slope:[0.96,1.02) s —— 'slope:[0.95,1.01]
25000 . R2=057 R2=0.57 . R2=0.56
. P 10-%
S 20 .
7]
2
g 15000 %
= 107 &
E
@ 10000
o

10°°

0 j 1000 22000 3000 4000 5000
Adjusted FINN emission

Figure 9. A comparison between permit and adjusted FINN daily total prescribed burning emissions
in Florida, South Carolina, and Georgia. The black line is a 1:1 line and the red line is the regression
line. Uncertainty of the linear regression parameters is reported with a 95% confidence interval.

We also conducted a grid-based comparison between adjusted FINN and permit
emissions in matched grid cells (Figure 10) based on the grid-based matching algorithm.
The R? between the permit and adjusted FINN grid-based emissions were 0.17, 0.16, and
0.18 for CO, PMj, and PM; 5, respectively, which were close to the correlation for the
grid-based burned area above (R% = 0.17).

4.3.3. Emissions Comparison with NEI

To evaluate FINN and its adjusted version, we compared its emissions with those
in the National Emissions Inventory (NEI) for 2014 [54] and 2017 [55] (Figures S16-521).
Specifically, we compared emissions from different sectors, including agricultural burning,
wildfire, and prescribed burning, using both NEI and FINN data processed through our
burn-type differentiation algorithms. The result reveals that prescribed burning was the
main source of emissions from wildland fires in the southeastern United States, with the
exception of Virginia (VA) and West Virginia (WV) in 2014, where wildfires were dominant.
Furthermore, our results show that FINN had higher total emissions than the NEI in most
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states. This is in contrast to Larkin et al. [22], who reported that the NEI in 2014, which
included GOES and MODIS, had higher fire emissions than version 1.5 of FINN (MODIS
only). This difference can be explained by the utilization of VIIRS in FINN version 2.5,
which has higher spatial resolution than MODIS and can detect more prescribed burns. For
our adjusted FINN, prescribed fire emissions were lower than FINN due to a 34% reduction
in the burned area but they were still higher than the NEI in most states.
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Figure 10. A comparison between permit and adjusted FINN-prescribed burning emissions in
matched grid cells under a 4 km grid definition. The black line is a 1:1 line and the red line
is the regression line. Uncertainty of the linear regression parameters was reported with a 95%
confidence interval.

5. Discussion

Burn permits and satellite products are the main resources for fire activity information
necessary for prescribed burning emissions estimation. Burn permits provide prescribed
burning records but are only available in some states. Satellite products detect worldwide
wildland fires but detecting small fires can be particularly challenging. Additionally,
satellite products do not differentiate the burn types of fires. Some studies [20,21] assume
fires detected by satellite products are all prescribed burnings in the southeastern United
States because prescribed burning is more common than the other types of fires. The
method for burn-type differentiation is still essential for prescribed burning emissions
estimation from satellite products since wildfires and prescribed burning have different fire
behaviors and emission patterns [7]. Prescribed burning emissions estimation also relies on
the burned area and emission factors. So, we derived an adjustment factor for the FINN
burned area and evaluated the uncertainty of the emissions across different frameworks
(FINN-provided emissions and BlueSky).

5.1. Burn-Type Differentiation

When evaluating the efficiency of our algorithm for detecting agricultural burns, the
disparity between permit-provided and NLCD-based burn types can be explained by the
uncertainties in NLCD data and the location and burn area of permit data. Although NLCD
updates the land cover data every three years, there is still a two-year gap between each
update. The changes in Florida’s cropland percentage and spatial extent are relatively large,
as indicated by Auch et al. [56]. Meanwhile, NLCD, which is derived from multiple satellite
imageries, has uncertainties in land type classifications. Wickham et al. [57] evaluated the
uncertainty of NLCD 2016 and reported an 86.4% and 90.6% overall accuracy for level
II and level I data, respectively. For reported permit data, the land cover type may not
be accurate if the recorded location is not accurate. Additionally, the square burned area
assumed in the algorithm could include other land types than the actual burned area, which
would change the dominant land cover type for the fire.

In the wildfire detection algorithm, the disparity between the WFIGS and our algo-
rithm can be explained for several reasons. First, WFIGS reports 9460 wildfires (without
filtering out small wildfires) in the southeastern United States, which is much lower than
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the number of fires (130, 780) reported in the national statistics of wildfires provided by the
National Interagency Fire Center [58], indicating that WFIGS is not a complete dataset for
wildfires. Meanwhile, prescribed burns in neighboring lands conducted on consecutive
days can be misclassified as wildfires by the wildfire detection algorithm. Additionally,
some wildfires are missed in FINN due to cloud cover or other obstacles, such as the tree
canopy [59]. FINN without burn-type differentiation only matches 53.21% of wildfires in
WEFIGS. Additionally, the fires that cannot be retrieved by FINN may affect the estimation
of fire duration, leading to misclassification. For example, a three-day wildfire detected on
the first and last days will be falsely classified as two separate prescribed burns.

5.2. Matching Prescribed Burning Records in FINN with Permits

The correlations between FINN burned area estimates and permit estimates vary under
different spatial resolutions. They can be partly explained by the spatial segmentation of
FINN. Although FINN clusters FRP from VIIRS and MODIS, it is still challenging to decide
whether several records which are near to each other belong to the same burning event.
Our spatial clustering analysis shows FINN separates fires that have a distance larger than
300 m (Figure S1), and it is possible that the records at such close distance belong to the
same event.

5.3. Prescribed Burning Emissions

The prescribed burning emission estimations can differ from different methods (FINN
or BlueSky) or fire activity data sources (adjusted FINN or permits). Prescribed burning
emissions estimated by FINN or BlueSky have a high correlation for southeastern daily
total emissions and a low correlation when making a fire event comparison. This result
indicates that evaluating specific prescribed burning impacts on air quality would yield
different results when the FINN or BlueSky method is employed. In this study, we used
BlueSky to provide the prescribed burning emissions for the southeastern United States
since the estimation of prescribed burning emissions in the CONUS (contiguous United
States) from BlueSky differs from FINN in several ways. Firstly, BlueSky uses FCCS, which
includes more detailed fuel types than FINN. Additionally, BlueSky separates wildfire and
prescribed burning for emission calculation and integrates emission factors from labora-
tory or field studies concentrated in the United States [35], while FINN concentrates on
global emission estimation and does not treat wildfire and prescribed burning differently.
Moreover, BlueSky estimates fuel moisture, fuel consumption, and plume height by con-
sidering meteorological conditions. This information affects the magnitude and vertical
structure of emissions. Meanwhile, FINN does not need meteorological conditions for
emission estimation.

Prescribed burning emission comparisons between adjusted FINN and permits show a
similar correlation as burned area comparisons, which indicates that burned area estimation
is important in prescribed burning emission estimations. For daily total emissions, adjusted
FINN emissions are close to permit-based emissions in Georgia and South Carolina after
applying the adjustment factor for the burned area. On the other hand, permit emissions are
about 80% higher than adjusted FINN emissions in Florida. The reason for the low adjusted
FINN emissions in Florida is that we developed the scaling factor to reduce FINN burned
area based on all three states (Figure 3). A burned area comparison for Florida indicates a
scaling factor to increase the burned area, which is a different pattern among these three
states. For grid-based emission comparisons, the slope of the linear regression without the
intercept is close to one since we adjusted burned area before BlueSky modeling. Without
the burned area adjustment, the same slope was only 0.6 (Figure 524). This indicates
that the FINN burned area adjustment mitigates the difference between FINN-based and
permit-based emissions. This also implies that the adjustment factor derived from the slope
of linear regression is robust, even though the R? of the linear regression between permit
and FINN burned areas was low.
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6. Conclusions

Wildland fires identified from the satellite-derived product FINN have been segregated
into different burn types (prescribed, agricultural burns, or wildfires) by considering the
land cover type of fire locations and fire durations. The burned area of prescribed burns
using FINN-based wildland fire estimates is compared with the burned area of prescribed
burning permits in Georgia, Florida, and South Carolina. Matching and comparisons
between the burned area from FINN and permits are conducted at various resolutions.
FINN burned area estimates have a low correlation (R? < 0.05) with permit estimates based
on fire-to-fire matching, while the correlation is relatively stronger for grid-based (R? > 0.17)
and statewide (R? > 0.55) matching. A linear regression model, developed using grid-based
matching results, determined that the prescribed burned area from FINN needs to be
reduced by 34% of the FINN burned area. Using the BlueSky framework with the adjusted
burned area, prescribed burning emissions are estimated for the southeastern United States
from 2013 to 2020. To understand the emission differences between FINN and BlueSky, we
also ran BlueSky with unadjusted FINN burned areas. The comparisons between emissions
from FINN and BlueSky indicate that the differences in emissions can be large for single fire
events (R? > 0.38), but much smaller when considering emission estimates at a 4 km grid
resolution (R? > 0.55), or when assessing statewide emissions (R? > 0.96). We also compare
emissions estimated from permit burn areas and the adjusted FINN burned area using
BlueSky to understand the uncertainty of prescribed burning emissions stemming from
the potential use of different data sources. The linear regression model between adjusted
FINN and permit emissions has a slope of around 0.94 with R? = 0.17. The result of this
comparison indicates that the magnitude of emissions from the adjusted FINN burned
area at a 4 km grid resolution agrees with those derived from permit burn areas. The
methods we presented here are readily useable for burn-type differentiation, matching
and comparison of the burned area between two datasets under various resolutions, and
estimation of prescribed burning emissions. This study also benefits health studies related
to prescribed burning since type-differentiated and more accurately estimated prescribed
burning emissions from satellite products are needed to model the air quality impacts
of prescribed fires. Those air quality impacts are essential to smoke exposure evaluation,
which can be used for public health research and surveillance. The emissions data we
produced can be readily used for air quality simulations and investigations of the health
impacts of prescribed burning in the southeastern United States between 2013 and 2020.

To improve the algorithms and emission products in this study, two main efforts
should be considered. Firstly, the state-level burn permit data systems should be unified
since it is difficult to obtain data from each state and the data formats vary from one
state to another. Burn information in unified permit databases can be grouped into three
categories by decreased level of importance. The first group should include latitude,
longitude, start date, and burn area, which are the minimum requirements for most fire
emission models. This information should be collected when fire managers apply for
permits. Updates of burn area data after the burn with the actual burned areas can improve
the understanding of the relationships between satellite-derived and ground-based data.
The second group may include the start time, end time, and burn type, which can be
recorded by the fire managers when they execute the burnings. Start and end times are
valuable for generating diurnal time profiles of emissions in chemical transport models.
Burn-type information is important for training and evaluating burn-type differentiation
algorithms. The third level may include the boundaries of the burned areas, which would
be valuable for improving and evaluating clustering algorithms in current fire emission
products that combine FRP data from different satellites, such as FINN. Secondly, the burn-
type differentiation algorithm can be improved by using statistical models or supervised
machine learning models when sufficient reliable wildfire data and prescribed burning
permit data are available. The occurrence probability of prescribed burns or wildfires could
be related to meteorological conditions or locations, which can be utilized for training
data-driven models. Furthermore, the algorithms and frameworks in this study can be
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applied for agricultural burning and wildfire emissions estimation using corresponding
emission factors.
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