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ARTICLE INFO ABSTRACT

Keywords: A number of studies have found differing associations of disease outcomes with PMy 5 components (or species)
CMAQ and sources (e.g., biomass burning, diesel vehicles and gasoline vehicles). Here, a unique method of fusing daily
CMB ) chemical transport model (Community Multiscale Air Quality Modeling) results with observations has been
E;;::usmn utilized to generate spatiotemporal fields of the concentrations of major gaseous pollutants (CO, NOy, NOy, O3,

and SO»), total PM 5 mass, and speciated PM3 5 (including crustal elements) over North Carolina for 2002-2010.
The fused results are then used in chemical mass balance source apportionment model, CMBGC-Iteration, which
uses both gas constraint and particulate matter concentrations to quantify source impacts. The method, as
applied to North Carolina, quantifies the impacts of ten source categories and provides estimates of source
contributions to PMy 5 concentrations. The ten source categories include both primary sources (diesel vehicles,
gasoline vehicles, dust, biomass burning, coal-fired power plants and sea salt) and secondary components
(ammonium sulfate, ammonium bisulfate, ammonium nitrate and secondary organic carbon). The results show a
steady decrease in anthropogenic source impacts, especially from diesel vehicles and coal-fired power plants.
Secondary pollutant components accounted for approximately 70% of PM, 5 mass. This study demonstrates an
ability to provide spatiotemporal fields of both PM components and source impacts using a chemical transport
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model fused with observation data, linked to a receptor-based source apportionment method, to develop
spatiotemporal fields of multiple pollutants.

1. Introduction

A number of epidemiologic studies have found adverse health effects
associated with exposure to particular matter (PM) (Fann et al., 2018;
Iskandar et al., 2012; Krall et al., 2017; Liu et al., 2016; Peng et al., 2009;
Sarnat et al., 2008, 2015; Silverman and Ito, 2010; Stafoggia et al., 2013;
Ye et al., 2018). Particulate matter with an aerodynamic diameter less
than 2.5 pm (PMy5) has the most substantial evidence indicating a
relationship between short- and long-term exposures with multiple
health outcomes. Considering that PMy 5 is a mixture of species that
come from different sources, it has been hypothesized that the associa-
tions of health outcomes with these species and sources may differ, and
studies have found this to be the case (Huang et al., 2019; Kim et al.,
2012; Krall et al., 2017; Lippmann, 2014; Lippmann et al., 2013; Sarnat
et al., 2008, 2015; Vedal et al., 2013).

Studies focusing on associations between total PMj 5 exposure (Rhee
et al., 2019), its components (Ito et al., 2011) and sources (Bell et al.,
2014) historically were based on using ambient air concentrations
measured at monitoring sites. Use of ground-based observations, alone,
lacks detailed spatial information of air pollution due to the sparse
distribution of monitoring sites, which can lead to exposure estimation
error and limited ability to assess health impacts in epidemiologic
studies (Adams et al., 2015; Goldman et al., 2011; Sarnat et al., 2007;
Sheppard et al., 2005; Strand et al., 2006; Zeger et al., 2000). Modeling
approaches such as dispersion models (Holmes and Morawska, 2006),
chemical transport models (Byun and Schere, 2006) (CTM), and land use
regression (Hoek et al., 2008), have frequently been used to generate
exposure fields that provide more spatial information. Meanwhile,
hybrid approaches that combine observations from monitoring sites,
output from CTMs, satellite observations and land use variables using
statistical (Hu et al., 2014) and machine learning (Meng et al., 2018)
methods have become available. Hybrid approaches decrease the bias in
the CTM spatiotemporal fields while using the detailed spatial infor-
mation not available in ground-based monitoring networks (Ivey et al.,
2015). Some of these methods are typically applied to total PM5 5 mass
with limited application to PM; 5 species, especially for element species,
which are important tracer species for quantifying the sources of PMs 5
components. A hybrid approach developed by Friberg et al. (2016)
provides spatiotemporal fields of both total and speciated PM, 5 (and,
here, is extended to include element species). The method fuses daily
results from a CTM with monitoring site observations to develop
spatiotemporal fields of pollutant concentrations. The exposure fields of
pollutants from data fusion are further used in source apportionment
methods to obtain spatiotemporal fields of source impacts.

In this work, we use CMBGC-Iteration (Shi et al., 2018), an improved
gas-constrained (GC) source apportionment method based on the
Chemical Mass Balance (CMB) model (Watson et al., 2004), a widely
used receptor model, to quantify the impacts of ten distinct sources on
PM, 5 in North Carolina based on the exposure fields generated from the
data fusion method. The ten sources include both primary sources
(diesel vehicles, gasoline vehicles, dust, biomass burning, coal com-
bustion, and sea salt) and secondary components (ammonium sulfate,
ammonium bisulfate, ammonium nitrate, and secondary organic car-
bon). Total PM; 5 mass and its species including elemental carbon (EC),
organic carbon (OC), sulfate, ammonium, nitrate and ten element spe-
cies (Al, Ca, Cu, Fe, K, Mn, Na, Pb, Si, and Zn), five gaseous species (CO,
NO,, NOy, O3 and SO,), and the ten source contributions to total PM 5
mass were estimated for the 2002-2010 period in support of the
CATHGEN study of associations between pollutants and health end-
points in a cohort study in North Carolina, USA.

2. Methods
2.1. Ambient monitor data

The air quality data used for data fusion come from the Chemical
Speciation Network (CSN) (Watson et al.,, 2004) and Interagency
Monitoring of Protected Visual Environments (IMPROVE) (Watson
et al.,, 2004) network. Concentrations of pollutants were obtained for
total PMj 5 mass, five major PM; 5 species (EC, OC, sulfate, ammonium,
nitrate), ten element species (Al, Ca, Cu, Fe, K, Mn, Na, Pb, Si, and Zn),
and five gaseous species (carbon monoxide (CO), nitrogen dioxide
(NOy), nitrogen oxides (NOy), ozone (O3) and sulfur dioxide (SO3))
(Fig. 1). Due to the limited number of monitoring sites for some species
(e.g., PMy 5 element species, CO, NOg, NOy, and SO3) in North Carolina,
we also included monitoring sites in neighboring states that are in
proximity to the state border. Simulated pollutant fields come from the
Community Multiscale Air Quality (CMAQ, version 4.5) model with a
horizontal resolution of 12 km (provided by U.S. EPA (Appel et al.,
2008)).

2.2. Data fusion approach

We applied a data fusion method developed by Friberg et al. (2016),
which blends daily averaged observations and CMAQ results based on
spatial correlation analysis between observations and CMAQ simula-
tions. The resulting product is a new field that captures the temporal
variations in local observations, as well as spatial variability in CMAQ
simulations. The method has previously been used to estimate daily
PM, 5 and its major species (EC, OC, sulfate, ammonium, and nitrate)
and gaseous pollutants (CO, NOy, and NO2) for North Carolina from
2006 to 2008 (Huang et al., 2018). Here, we extend the method to
include element species and apply the method for a longer time period,
which is more conducive for longer-term epidemiologic analyses. Fields
for Cu, Fe, K, Mn, Zn were derived by fusing the observations and the
corresponding simulated trace species in CMAQ. Due to lack of simu-
lated concentrations for those tracer species for some years, we applied
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Fig. 1. Locations of monitoring sites used in this study.
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these years have larger wildfire burn areas compared to other years
(North Carolina Forest Service). Further, the OC, in large part, will be
due to biogenic emissions (Offenberg et al., 2011). For EC, the CMAQ
simulation shows an increasing trend rather than the decreasing trend
seen in the observations from 2007 to 2010, which may be due to the fire
emissions used in the simulation. In 2008, there was a large wildfire
(Evans Road Wildfire) (North Carolina Climate Office) in Eastern North
Carolina. According to the 2008 National Emission Inventory (NEI)
(EPA, 2008), 64% of the total PM5 5 emissions come from fires in North
Carolina. Emissions used in CMAQ for those years (2007-2010) were
based on the 2008 NEI and projected to other years. Considering the
exceptional event in 2008, simulations using the 2008 NEI fire emissions
may lead to the increasing trend for EC since 2007. Correcting such a
bias shows the importance of the data fusion step.

Observed trends in most crustal element species are flat from 2002 to
2010 except for aluminum, sodium, lead, and zinc. Annual average of
sodium decreases about 70% from 0.22 pg/m® to 0.07 pg/m® while
aluminum and zinc increased by about 145%. CMAQ-derived concen-
trations of crustal elements are overestimated except sodium and zinc as
compared to observations. Only observations above detection limits
were considered for this evaluation. Observed O3 concentrations are
relatively low and stable over these years. The annual average of other
gaseous pollutants decreases over 40% in 2010 compared to 2002. SO4
shows the most significant change in the annual average, with decreases
of about 70% from 2.99 ppb (2002) to 0.80 ppb (2010). CMAQ simu-
lations have better performance for gaseous pollutants than most PM
species, with an averaged correlation of 0.53 for the gases (Table 1).
CMAQ does not capture the decrease in observed CO concentrations
(about 22%) from 2004 to 2005 and underestimates the CO concen-
trations throughout the entire period. However, CO performance
improved later (e.g., smaller difference compared to observations)
despite missing the higher CO in earlier years, which may be due to the
larger wildfire emissions inputs. CMAQ is biased high in simulating the
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ozone concentrations but captures the year-to-year variations, with a
correlation of 0.61 compared to observations (Table 1).

Observed total PMs 5 mass and five major PM species display a strong
seasonal variation. Total PM; 5, OC, sulfate, and ammonium are high in
summer and low in winter while EC and nitrate are high in winter and
low in summer. CMAQ simulations do not capture the same seasonal
variation for total PMy s, EC, and OC. Of the element species, only silicon
and zinc have obvious seasonal variations, with high observed concen-
trations in summer and low observed concentrations in winter. Observed
potassium has several peaks during summer due to wildfires. For
gaseous pollutants, seasonal variations are strong for all species. All the
gaseous pollutants, except O3, have higher concentrations in the winter
compared to the summer. The correlations between observed and
CMAQ-simulated concentrations of element species are mostly smaller
than 0.4 (Table 1).

3.2. Data fusion results

Comparisons between observations with data fusion results have
better performance than that with CMAQ with smaller normalized mean
errors and root mean square errors and higher correlations due to the
method mechanism. To evaluate uncertainty of data fusion method, an
exhaustive 10% data withholding of observations is conducted and the
results still outperform the raw CMAQ results (Table 1). Local obser-
vations are averaged over 24 h, over which time air parcels have typi-
cally moved 10’s of km’s, and thus have been impacted by sources over a
relatively broad region. However, they may be highly impacted by a
local source, thus skewing the observations such that they no longer
represent regional conditions. Using the air quality model and interpo-
lation will help decrease this misalignment, but it still can exist. Total
PM, 5 mass is high in the Piedmont region (the middle region of the state
(North Carolina Department of Public Instruction)) and low in the
mountain (western NC) and coastal (Eastern NC) regions (Fig. 2,

PM, . (uglrn“]

2002 2010

-85 —50 -75
Longitude

Longitude

Longitude

Fig. 2. Annual average spatial distribution fields from data fusion for total PM, 5, EC, OC and sulfate in 2002 and 2010 and the concentration differences between

these two years, pg/m°.



R. Huang et al.

Fig. S3). The concentrations of PM; 5 were lower across North Carolina
in 2010 compare to 2002. Urban areas have higher EC and OC con-
centrations than rural areas (Fig. 2, Figs. S4 and S5). Compare to 2002,
EC is lower in 2010 while OC increases in some regions in North Car-
olina. The middle region has higher sulfate concentrations (Fig. 2,
Fig. S6) due to SO, emissions from coal-fired power plants and the
concentrations decrease dramatically from 2002 to 2010, especially in
the center of the state. Nine of the state’s 14 major coal-fired power
plants were located in this region (Li and Gibson, 2014). Higher
ammonium (Fig. S7) and nitrate (Fig. S8) concentrations in the south-
eastern part of the state are due largely to the intensive hog operations
located in this area (Wing et al., 2000). Spatial distributions of crustal
elements (Fig. S9 — Fig. S18) are more homogeneous than for major
PM; 5 species. For the gaseous pollutants (Fig. S19 — Fig. 523), all the
species show higher concentrations in the areas with greater emissions,
with the exception of O3 which is more spatially homogeneous.

OC and sulfate are the dominant species in total PMj 5, accounting
for about 20% and 30%, respectively (Fig. 3). 2009 has the lowest total
PM, 5 mass with the lowest sulfate, ammonium, and nitrate concentra-
tions among the reporting years. The large decrease of these secondary
pollutant concentrations is mainly due to the reduction of SO and NOy
emissions from coal-fired power plants as a response to the North Car-
olina Clean Smokestacks Act (North Carolina Department of Environ-
mental Quality), which was aimed at reducing emissions of SOz and NOy
from coal-fired power plants by 49% and 77%, respectively, by 2009
compared to 1998.

3.3. Source apportionment (CMBGC-Iteration) results

3.3.1. Source contributions

From 2002 to 2010, total PM; 5 concentration decreases by 20.7%
while most source contributions decrease during the same period, with
the exception of biomass burning and soil dust. Diesel vehicle contri-
bution decreases by about 81.7% and coal-fired power plant contribu-
tion decreases by 66.7%, and these are the two largest decreases among
the sources. Ammonium bisulfate, ammonium sulfate and ammonium
nitrate decrease by about 43.1%, 27.3% and 38.3%, respectively. Sec-
ondary organic carbon and gasoline vehicles decrease by 3.5% and 6%,
respectively, which are the two lowest rates of decrease. Biomass
burning increases by 15.3%, and soil dust increases by 31.4% (Fig. 4).

In North Carolina, biomass burning, ammonium bisulfate and
ammonium sulfate are the main sources, comprising about 60% of the
total PMjy 5. Contributions from dust and coal-fired power plants (coal
combustion) are about 4% and 0.06% in 2010, which are relatively low
compared to 20% and 8% from the 2011 NEI (EPA, 2011) for North
Carolina. However, this is not unexpected given the large amount of

Concentration (/Lg/me‘)

2002 2003 2004 2005 2006 2007 2008 2009 2010

Fig. 3. Total PM, s mass and its species concentrations from data fusion,
averaged statewide: 2002-2010, pg/m®.
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Fig. 4. Annual average sources contributions in total PM, 5 mass, pg/m3. (Ss:
sea salt, SOC: secondary organic carbon, AMNITR: ammonium nitrate, AMB-
SULF: ammonium bisulfate, AMSULF: ammonium sulfate, CFPP: coal-fired
power plants, BURN: biomass burning, SDUST: soil dust, HDDV: heavy-duty
diesel vehicles, LDGV: light-duty gasoline vehicles).

secondary PM; 5 formation and that the coal combustion emissions are
often elevated and away from cities. The contribution from biomass
burning is about 28% in 2010, somewhat larger than the 15% of primary
PM, 5 from biomass burning reported in the 2011 NEI It may be due to
the collinearity of sources with similar tracer species. For biomass
burning, the largest tracer species is organic carbon, which also highly
depends on vehicles and secondary organic carbon (Fig. 5).

3.3.2. Spatial distributions

Annual averages of the CMBGC-Iteration model daily values show
that light-duty gasoline vehicle and heavy-duty diesel vehicle impacts
have higher contributions along highways and in urban areas, while soil
dust has higher impacts along the coast and in the Appalachian Moun-
tains of western North Carolina than urban areas (Fig. 6, Fig. S24-
Fig. S33). Compare with 2002, heavy-duty diesel vehicle impacts are
lower especially in urban areas while light-duty gasoline vehicle impacts
increase in urban areas in 2010. Biomass burning impacts are relatively
homogenous throughout the state. And it increases in most of region in
2010 compare with 2002 (Fig. 6). The increasing pattern is consistent
with increased burning area in North Carolina (Fig. S35) (National
Interagency Fire Center). Contributions from coal-fired power plants are
mainly in the Piedmont region of central North Carolina where many of
the larger coal-fired power plants are located. The obvious reduction is
near the coal-fired power plants region (Fig. 6). It can be explained by
the responses to North Carolina Clean Smokestacks Act (North Carolina
Department of Environmental Quality). Ammonium sulfate and
ammonium nitrate are elevated in southeastern North Carolina, location
of many hog farms that emit ammonia (Wing et al., 2000). The elevated
ammonia leads to lower ammonium bisulfate as sulfate forms ammo-
nium sulfate rather than ammonium bisulfate when ammonia concen-
trations are high (Cheng et al., 2019). Secondary organic carbon is also
high in the Piedmont region and is more homogeneous than diesel ve-
hicles and gasoline vehicles contributions. Sodium (Na™) levels are
relatively homogeneous and low, though slightly higher over the
mountains than the coast. This unanticipated result is explained by the
lack of observations near the coast leading to a negative exponent in
regression model of data fusion and it leads to negative correlation be-
tween data fusion result and CMAQ result (Table S1). The
CMBGC-Iteration model was run both with, and without, the sea salt
source, leading to very similar levels of impacts from sources other than
sea salt (Fig. S34).
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Fig. 7. Monthly average source contributions to total PMj 5 mass: 2002-2010, pg/m?>.

3.3.3. Temporal distributions

PM; 5 sources show strong seasonal variations (Fig. 7). Contributions
of diesel vehicles, gasoline vehicles and coal-fired power plants are
higher in winter than in summer due to lower mixing heights in winter.
Ammonium nitrate is also high as its formation is thermodynamically
more favorable at low temperatures (Russell et al., 1967; Stelson and
Seinfeld, 1967). Ammonium sulfate and ammonium bisulfate are higher
in summer than in winter as SO is rapidly oxidized, and it is lost more
slowly to wet deposition. Of interest, ammonium bisulfate increases
more in the summer than ammonium sulfate as the amount of sulfate
formed becomes greater than the ammonia available to form ammonium
sulfate, leading to higher aerosol acidities (Shi et al., 2017; Weber et al.,
2016). The concentration of soil dust is also higher in summer.

3.3.4. Source apportionments evaluation

Since it is hard to evaluate the apportionment results because direct
observations of source impacts are not available, we compare our results
with air pollutant emission trend data for 2002 to 2010 in North Car-
olina and previous apportionment of PMys results in southeastern
United States (EPA, 2021; Zhai et al., 2017). For biomass burning,
annual averaged biomass burning impacts from our source apportion-
ment study are compared with annual burned area due to absence of
prescribed burning emissions during 2002-2007 in the trend data (Na-
tional Interagency Fire Center). Biomass burning impacts and burned
area increase from previous year to recent year and are positively
correlated with an R® = 0.71 (Fig. 8). Mobile emissions decrease 37%
while the impacts from gasoline and diesel vehicles decrease 30%. The
similarity is evidenced by the R? of 0.88 (Fig. 8). Coal-fired power plant

contributions decrease by 67% while fuel combustion from electricity
utility decreases by 66%. The decreases of ammonium sulfate and
ammonium bisulfate can be explained by decreases of SO, emissions
(Fig. 8). Meanwhile, reduction of ammonium nitrate is due to NOy
emission controls, including those due to the North Carolina Clean
Smokestacks Act (North Carolina Department of Environmental Qual-
ity). Ammonium nitrate impacts are positively correlated with NOy
emission with an R? = 0.75 (Fig. 8). To evaluate our novel method, we
also compare our results with long-term source apportionments of PM5 5
study in Georgia based on observations and CMB modeling (Zhai et al.,
2017). The study shows the largest contributions are from sulfate,
biomass burning, and other OC and it is consistent with our results.
Biomass burning is increasing in North Carolina while the Georgia study
found decreases. The difference is tied to different burned area trends in
North Carolina and Georgia. However, the relative contributions of
biomass burning increased due to the reduced PMy 5 in both studies.
Decreases are detected in the other sources. Both of the studies found
similar temporal patterns. In previous study, contributions from primary
coal combustion and vehicles are spatially heterogeneous while
ammonium sulfate, ammonium bisulfate and ammonium nitrate are
homogeneous. Our results show that primary PM; 5 from coal combus-
tion and PMy 5 from vehicles are concentrated in urban areas, especially
near the road and power plants. For ammonium sulfate, ammonium
bisulfate and ammonium nitrate, high concentrations are in south-
eastern North Carolina with more homogeneous pattern. As demon-
strated, this method provides additional spatial information beyond
applying CMB in measurement locations and interpolating those results.
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Fig. 8. Biomass burning vs. burned area during 2002-2010 in North Carolina; source apportionments vs. air pollutant emission trend during 2002-2010 in

North Carolina.

4. Conclusions

Daily pollutant concentrations of total and speciated PMj 5 and five
gaseous pollutants are estimated in North Carolina at 12 km horizontal
resolution from 2002 to 2010 using a data fusion method. The fused data
are used in the CMBGC-Iteration source apportionment method to pro-
vide of PM, 5 impacts from ten sources across the state. The results show
a significant decrease over time in both PM species and source impacts,
especially from diesel vehicles and coal combustion. Secondary pollut-
ants are dominant over the state, though sulfate, nitrate, and the related
ammonium, are decreasing. The methods presented in this study provide
a long period of pollutant concentrations and source impacts that are
readily useable for long-term, state-wide epidemiologic studies. The
pollutant exposure and source impacts fields are presently being used in
a health study to identify the associations between PM; 5 components
and sources and coronary heart disease (McGuinn et al., 2017; Slawsky
et al.,, 2021). The approach is readily applicable across a variety of
spatial scales when observations and CTM results are available.
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