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A B S T R A C T   

A number of studies have found differing associations of disease outcomes with PM2.5 components (or species) 
and sources (e.g., biomass burning, diesel vehicles and gasoline vehicles). Here, a unique method of fusing daily 
chemical transport model (Community Multiscale Air Quality Modeling) results with observations has been 
utilized to generate spatiotemporal fields of the concentrations of major gaseous pollutants (CO, NO2, NOx, O3, 
and SO2), total PM2.5 mass, and speciated PM2.5 (including crustal elements) over North Carolina for 2002–2010. 
The fused results are then used in chemical mass balance source apportionment model, CMBGC-Iteration, which 
uses both gas constraint and particulate matter concentrations to quantify source impacts. The method, as 
applied to North Carolina, quantifies the impacts of ten source categories and provides estimates of source 
contributions to PM2.5 concentrations. The ten source categories include both primary sources (diesel vehicles, 
gasoline vehicles, dust, biomass burning, coal-fired power plants and sea salt) and secondary components 
(ammonium sulfate, ammonium bisulfate, ammonium nitrate and secondary organic carbon). The results show a 
steady decrease in anthropogenic source impacts, especially from diesel vehicles and coal-fired power plants. 
Secondary pollutant components accounted for approximately 70% of PM2.5 mass. This study demonstrates an 
ability to provide spatiotemporal fields of both PM components and source impacts using a chemical transport 
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model fused with observation data, linked to a receptor-based source apportionment method, to develop 
spatiotemporal fields of multiple pollutants.   

1. Introduction 

A number of epidemiologic studies have found adverse health effects 
associated with exposure to particular matter (PM) (Fann et al., 2018; 
Iskandar et al., 2012; Krall et al., 2017; Liu et al., 2016; Peng et al., 2009; 
Sarnat et al., 2008, 2015; Silverman and Ito, 2010; Stafoggia et al., 2013; 
Ye et al., 2018). Particulate matter with an aerodynamic diameter less 
than 2.5 μm (PM2.5) has the most substantial evidence indicating a 
relationship between short- and long-term exposures with multiple 
health outcomes. Considering that PM2.5 is a mixture of species that 
come from different sources, it has been hypothesized that the associa
tions of health outcomes with these species and sources may differ, and 
studies have found this to be the case (Huang et al., 2019; Kim et al., 
2012; Krall et al., 2017; Lippmann, 2014; Lippmann et al., 2013; Sarnat 
et al., 2008, 2015; Vedal et al., 2013). 

Studies focusing on associations between total PM2.5 exposure (Rhee 
et al., 2019), its components (Ito et al., 2011) and sources (Bell et al., 
2014) historically were based on using ambient air concentrations 
measured at monitoring sites. Use of ground-based observations, alone, 
lacks detailed spatial information of air pollution due to the sparse 
distribution of monitoring sites, which can lead to exposure estimation 
error and limited ability to assess health impacts in epidemiologic 
studies (Adams et al., 2015; Goldman et al., 2011; Sarnat et al., 2007; 
Sheppard et al., 2005; Strand et al., 2006; Zeger et al., 2000). Modeling 
approaches such as dispersion models (Holmes and Morawska, 2006), 
chemical transport models (Byun and Schere, 2006) (CTM), and land use 
regression (Hoek et al., 2008), have frequently been used to generate 
exposure fields that provide more spatial information. Meanwhile, 
hybrid approaches that combine observations from monitoring sites, 
output from CTMs, satellite observations and land use variables using 
statistical (Hu et al., 2014) and machine learning (Meng et al., 2018) 
methods have become available. Hybrid approaches decrease the bias in 
the CTM spatiotemporal fields while using the detailed spatial infor
mation not available in ground-based monitoring networks (Ivey et al., 
2015). Some of these methods are typically applied to total PM2.5 mass 
with limited application to PM2.5 species, especially for element species, 
which are important tracer species for quantifying the sources of PM2.5 
components. A hybrid approach developed by Friberg et al. (2016) 
provides spatiotemporal fields of both total and speciated PM2.5 (and, 
here, is extended to include element species). The method fuses daily 
results from a CTM with monitoring site observations to develop 
spatiotemporal fields of pollutant concentrations. The exposure fields of 
pollutants from data fusion are further used in source apportionment 
methods to obtain spatiotemporal fields of source impacts. 

In this work, we use CMBGC-Iteration (Shi et al., 2018), an improved 
gas-constrained (GC) source apportionment method based on the 
Chemical Mass Balance (CMB) model (Watson et al., 2004), a widely 
used receptor model, to quantify the impacts of ten distinct sources on 
PM2.5 in North Carolina based on the exposure fields generated from the 
data fusion method. The ten sources include both primary sources 
(diesel vehicles, gasoline vehicles, dust, biomass burning, coal com
bustion, and sea salt) and secondary components (ammonium sulfate, 
ammonium bisulfate, ammonium nitrate, and secondary organic car
bon). Total PM2.5 mass and its species including elemental carbon (EC), 
organic carbon (OC), sulfate, ammonium, nitrate and ten element spe
cies (Al, Ca, Cu, Fe, K, Mn, Na, Pb, Si, and Zn), five gaseous species (CO, 
NO2, NOx, O3 and SO2), and the ten source contributions to total PM2.5 
mass were estimated for the 2002–2010 period in support of the 
CATHGEN study of associations between pollutants and health end
points in a cohort study in North Carolina, USA. 

2. Methods 

2.1. Ambient monitor data 

The air quality data used for data fusion come from the Chemical 
Speciation Network (CSN) (Watson et al., 2004) and Interagency 
Monitoring of Protected Visual Environments (IMPROVE) (Watson 
et al., 2004) network. Concentrations of pollutants were obtained for 
total PM2.5 mass, five major PM2.5 species (EC, OC, sulfate, ammonium, 
nitrate), ten element species (Al, Ca, Cu, Fe, K, Mn, Na, Pb, Si, and Zn), 
and five gaseous species (carbon monoxide (CO), nitrogen dioxide 
(NO2), nitrogen oxides (NOx), ozone (O3) and sulfur dioxide (SO2)) 
(Fig. 1). Due to the limited number of monitoring sites for some species 
(e.g., PM2.5 element species, CO, NO2, NOx, and SO2) in North Carolina, 
we also included monitoring sites in neighboring states that are in 
proximity to the state border. Simulated pollutant fields come from the 
Community Multiscale Air Quality (CMAQ, version 4.5) model with a 
horizontal resolution of 12 km (provided by U.S. EPA (Appel et al., 
2008)). 

2.2. Data fusion approach 

We applied a data fusion method developed by Friberg et al. (2016), 
which blends daily averaged observations and CMAQ results based on 
spatial correlation analysis between observations and CMAQ simula
tions. The resulting product is a new field that captures the temporal 
variations in local observations, as well as spatial variability in CMAQ 
simulations. The method has previously been used to estimate daily 
PM2.5 and its major species (EC, OC, sulfate, ammonium, and nitrate) 
and gaseous pollutants (CO, NOx, and NO2) for North Carolina from 
2006 to 2008 (Huang et al., 2018). Here, we extend the method to 
include element species and apply the method for a longer time period, 
which is more conducive for longer-term epidemiologic analyses. Fields 
for Cu, Fe, K, Mn, Zn were derived by fusing the observations and the 
corresponding simulated trace species in CMAQ. Due to lack of simu
lated concentrations for those tracer species for some years, we applied 

Fig. 1. Locations of monitoring sites used in this study.  
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the ratios that come from source profile of those tracer species and 
multiplied them with simulated total PM2.5 to obtain the simulated 
concentrations. Additional details of the data fusion method and appli
cation in the CATHGEN study can be found in previous publications 
(Huang et al., 2018; McGuinn et al., 2017). 

2.3. CMBGC-iteration model 

The CMBGC-Iteration (Shi et al., 2018) model extends the traditional 
CMB approach, using the ratio of gases to PM2.5 as constraints while 
considering the uncertainties of source profiles and receptor datasets. 
Gas-to-particle ratios (e.g., SO2/PM2.5, CO/PM2.5, and NOx/PM2.5 ra
tios) were introduced into CMBGC-Iteration to identify potential sources 
and their contributions. Ten sources were identified using this model, 
including six primary sources (diesel vehicles, gasoline vehicles, dust, 
biomass burning, coal combustion, and sea salt) and four secondary 
components (ammonium sulfate, ammonium bisulfate, ammonium ni
trate and secondary organic carbon). “Coal combustion” only includes 
the primary components from coal combustion and does not include 
contributions from the secondary formation of PM2.5 due to SO2 or NOx 
emissions, or the associated ammonium. The source profiles used in this 
CMBGC-Iteration application were developed by Ivey et al. (2017), 
where nonlinear optimization was used to update static profiles to 
reflect spatial and seasonal nuances. Detailed descriptions of the 
CMBGC-Iteration model are found in a previous publication (Shi et al., 
2018). 

The approach chosen here, combining data-fused species fields and a 
receptor-based source apportionment model differs from the method 
developed by Ivey et al. (2015) which uses a CTM to directly estimate a 
priori source impact fields, then integrates observations to modify those 
fields. That approach is computationally intensive. As applied here, the 
data fusion approach can utilize prior model results from the CTM 
without the need for CTM-developed source impact fields, which is 
attractive as there is a long record of CTM simulations available at a 
variety of horizontal resolutions. Both approaches reproduce observed 
species levels very well because they integrate observations, and prior 
studies have thoroughly evaluated the approaches using data with
holding and cross validation (Friberg et al., 2016; Huang et al., 2018). 
However, it is not currently possible to evaluate how well actual source 
impacts are estimated, as there are no direct observations for compari
son. Both methods capture the temporal and spatial trends in pollutants, 
however the following approach applied in this work is computationally 
attractive and can be utilized when both CTM simulations (including PM 
and gaseous species) and observations are available. 

3. Results and discussions 

3.1. Observations and CMAQ results 

Prior to the application of the data fusion method, monthly and 
annual averages of CMAQ simulation results were evaluated against 
observations from monitoring sites from 2002 to 2010. Quantities 
evaluated included total PM2.5 mass, its species including EC, OC, sul
fate, ammonium, nitrate, and 10 PM2.5 element species (Al, Ca, Cu, Fe, 
K, Mn, Na, Pb, Si, and Zn), and five gaseous pollutants (Figs. S1 and S2, 
Table 1). Simulations from CMAQ have good correlations with obser
vations for PM2.5 major species with R (Pearson correlation) larger than 
0.57. 

The annual average of observed total PM2.5 mass shows a decreasing 
trend from 2002 to 2009 with a slight increase from 2009 to 2010. 
Overall, total PM2.5 mass decreases about 24% from 2002 to 2010. The 
CMAQ simulation captures a similar decreasing and increasing trend but 
underestimates the concentrations. Concentrations of some of the major 
PM2.5 species, e.g., sulfate, ammonium, and nitrate also show a similar 
pattern, while EC and OC do not. Those two species have larger observed 
annual average concentrations during 2006–2008, possibly because Ta
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these years have larger wildfire burn areas compared to other years 
(North Carolina Forest Service). Further, the OC, in large part, will be 
due to biogenic emissions (Offenberg et al., 2011). For EC, the CMAQ 
simulation shows an increasing trend rather than the decreasing trend 
seen in the observations from 2007 to 2010, which may be due to the fire 
emissions used in the simulation. In 2008, there was a large wildfire 
(Evans Road Wildfire) (North Carolina Climate Office) in Eastern North 
Carolina. According to the 2008 National Emission Inventory (NEI) 
(EPA, 2008), 64% of the total PM2.5 emissions come from fires in North 
Carolina. Emissions used in CMAQ for those years (2007–2010) were 
based on the 2008 NEI and projected to other years. Considering the 
exceptional event in 2008, simulations using the 2008 NEI fire emissions 
may lead to the increasing trend for EC since 2007. Correcting such a 
bias shows the importance of the data fusion step. 

Observed trends in most crustal element species are flat from 2002 to 
2010 except for aluminum, sodium, lead, and zinc. Annual average of 
sodium decreases about 70% from 0.22 μg/m3 to 0.07 μg/m3 while 
aluminum and zinc increased by about 145%. CMAQ-derived concen
trations of crustal elements are overestimated except sodium and zinc as 
compared to observations. Only observations above detection limits 
were considered for this evaluation. Observed O3 concentrations are 
relatively low and stable over these years. The annual average of other 
gaseous pollutants decreases over 40% in 2010 compared to 2002. SO2 
shows the most significant change in the annual average, with decreases 
of about 70% from 2.99 ppb (2002) to 0.80 ppb (2010). CMAQ simu
lations have better performance for gaseous pollutants than most PM 
species, with an averaged correlation of 0.53 for the gases (Table 1). 
CMAQ does not capture the decrease in observed CO concentrations 
(about 22%) from 2004 to 2005 and underestimates the CO concen
trations throughout the entire period. However, CO performance 
improved later (e.g., smaller difference compared to observations) 
despite missing the higher CO in earlier years, which may be due to the 
larger wildfire emissions inputs. CMAQ is biased high in simulating the 

ozone concentrations but captures the year-to-year variations, with a 
correlation of 0.61 compared to observations (Table 1). 

Observed total PM2.5 mass and five major PM species display a strong 
seasonal variation. Total PM2.5, OC, sulfate, and ammonium are high in 
summer and low in winter while EC and nitrate are high in winter and 
low in summer. CMAQ simulations do not capture the same seasonal 
variation for total PM2.5, EC, and OC. Of the element species, only silicon 
and zinc have obvious seasonal variations, with high observed concen
trations in summer and low observed concentrations in winter. Observed 
potassium has several peaks during summer due to wildfires. For 
gaseous pollutants, seasonal variations are strong for all species. All the 
gaseous pollutants, except O3, have higher concentrations in the winter 
compared to the summer. The correlations between observed and 
CMAQ-simulated concentrations of element species are mostly smaller 
than 0.4 (Table 1). 

3.2. Data fusion results 

Comparisons between observations with data fusion results have 
better performance than that with CMAQ with smaller normalized mean 
errors and root mean square errors and higher correlations due to the 
method mechanism. To evaluate uncertainty of data fusion method, an 
exhaustive 10% data withholding of observations is conducted and the 
results still outperform the raw CMAQ results (Table 1). Local obser
vations are averaged over 24 h, over which time air parcels have typi
cally moved 10’s of km’s, and thus have been impacted by sources over a 
relatively broad region. However, they may be highly impacted by a 
local source, thus skewing the observations such that they no longer 
represent regional conditions. Using the air quality model and interpo
lation will help decrease this misalignment, but it still can exist. Total 
PM2.5 mass is high in the Piedmont region (the middle region of the state 
(North Carolina Department of Public Instruction)) and low in the 
mountain (western NC) and coastal (Eastern NC) regions (Fig. 2, 

Fig. 2. Annual average spatial distribution fields from data fusion for total PM2.5, EC, OC and sulfate in 2002 and 2010 and the concentration differences between 
these two years, μg/m3. 
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Fig. S3). The concentrations of PM2.5 were lower across North Carolina 
in 2010 compare to 2002. Urban areas have higher EC and OC con
centrations than rural areas (Fig. 2, Figs. S4 and S5). Compare to 2002, 
EC is lower in 2010 while OC increases in some regions in North Car
olina. The middle region has higher sulfate concentrations (Fig. 2, 
Fig. S6) due to SO2 emissions from coal-fired power plants and the 
concentrations decrease dramatically from 2002 to 2010, especially in 
the center of the state. Nine of the state’s 14 major coal-fired power 
plants were located in this region (Li and Gibson, 2014). Higher 
ammonium (Fig. S7) and nitrate (Fig. S8) concentrations in the south
eastern part of the state are due largely to the intensive hog operations 
located in this area (Wing et al., 2000). Spatial distributions of crustal 
elements (Fig. S9 – Fig. S18) are more homogeneous than for major 
PM2.5 species. For the gaseous pollutants (Fig. S19 – Fig. S23), all the 
species show higher concentrations in the areas with greater emissions, 
with the exception of O3 which is more spatially homogeneous. 

OC and sulfate are the dominant species in total PM2.5, accounting 
for about 20% and 30%, respectively (Fig. 3). 2009 has the lowest total 
PM2.5 mass with the lowest sulfate, ammonium, and nitrate concentra
tions among the reporting years. The large decrease of these secondary 
pollutant concentrations is mainly due to the reduction of SO2 and NOx 
emissions from coal-fired power plants as a response to the North Car
olina Clean Smokestacks Act (North Carolina Department of Environ
mental Quality), which was aimed at reducing emissions of SO2 and NOx 
from coal-fired power plants by 49% and 77%, respectively, by 2009 
compared to 1998. 

3.3. Source apportionment (CMBGC-Iteration) results 

3.3.1. Source contributions 
From 2002 to 2010, total PM2.5 concentration decreases by 20.7% 

while most source contributions decrease during the same period, with 
the exception of biomass burning and soil dust. Diesel vehicle contri
bution decreases by about 81.7% and coal-fired power plant contribu
tion decreases by 66.7%, and these are the two largest decreases among 
the sources. Ammonium bisulfate, ammonium sulfate and ammonium 
nitrate decrease by about 43.1%, 27.3% and 38.3%, respectively. Sec
ondary organic carbon and gasoline vehicles decrease by 3.5% and 6%, 
respectively, which are the two lowest rates of decrease. Biomass 
burning increases by 15.3%, and soil dust increases by 31.4% (Fig. 4). 

In North Carolina, biomass burning, ammonium bisulfate and 
ammonium sulfate are the main sources, comprising about 60% of the 
total PM2.5. Contributions from dust and coal-fired power plants (coal 
combustion) are about 4% and 0.06% in 2010, which are relatively low 
compared to 20% and 8% from the 2011 NEI (EPA, 2011) for North 
Carolina. However, this is not unexpected given the large amount of 

secondary PM2.5 formation and that the coal combustion emissions are 
often elevated and away from cities. The contribution from biomass 
burning is about 28% in 2010, somewhat larger than the 15% of primary 
PM2.5 from biomass burning reported in the 2011 NEI. It may be due to 
the collinearity of sources with similar tracer species. For biomass 
burning, the largest tracer species is organic carbon, which also highly 
depends on vehicles and secondary organic carbon (Fig. 5). 

3.3.2. Spatial distributions 
Annual averages of the CMBGC-Iteration model daily values show 

that light-duty gasoline vehicle and heavy-duty diesel vehicle impacts 
have higher contributions along highways and in urban areas, while soil 
dust has higher impacts along the coast and in the Appalachian Moun
tains of western North Carolina than urban areas (Fig. 6, Fig. S24- 
Fig. S33). Compare with 2002, heavy-duty diesel vehicle impacts are 
lower especially in urban areas while light-duty gasoline vehicle impacts 
increase in urban areas in 2010. Biomass burning impacts are relatively 
homogenous throughout the state. And it increases in most of region in 
2010 compare with 2002 (Fig. 6). The increasing pattern is consistent 
with increased burning area in North Carolina (Fig. S35) (National 
Interagency Fire Center). Contributions from coal-fired power plants are 
mainly in the Piedmont region of central North Carolina where many of 
the larger coal-fired power plants are located. The obvious reduction is 
near the coal-fired power plants region (Fig. 6). It can be explained by 
the responses to North Carolina Clean Smokestacks Act (North Carolina 
Department of Environmental Quality). Ammonium sulfate and 
ammonium nitrate are elevated in southeastern North Carolina, location 
of many hog farms that emit ammonia (Wing et al., 2000). The elevated 
ammonia leads to lower ammonium bisulfate as sulfate forms ammo
nium sulfate rather than ammonium bisulfate when ammonia concen
trations are high (Cheng et al., 2019). Secondary organic carbon is also 
high in the Piedmont region and is more homogeneous than diesel ve
hicles and gasoline vehicles contributions. Sodium (Na+) levels are 
relatively homogeneous and low, though slightly higher over the 
mountains than the coast. This unanticipated result is explained by the 
lack of observations near the coast leading to a negative exponent in 
regression model of data fusion and it leads to negative correlation be
tween data fusion result and CMAQ result (Table S1). The 
CMBGC-Iteration model was run both with, and without, the sea salt 
source, leading to very similar levels of impacts from sources other than 
sea salt (Fig. S34). 

Fig. 3. Total PM2.5 mass and its species concentrations from data fusion, 
averaged statewide: 2002–2010, μg/m3. 

Fig. 4. Annual average sources contributions in total PM2.5 mass, μg/m3. (SS: 
sea salt, SOC: secondary organic carbon, AMNITR: ammonium nitrate, AMB
SULF: ammonium bisulfate, AMSULF: ammonium sulfate, CFPP: coal-fired 
power plants, BURN: biomass burning, SDUST: soil dust, HDDV: heavy-duty 
diesel vehicles, LDGV: light-duty gasoline vehicles). 
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Fig. 5. Annual average contributions of PM2.5 from ten sources from 2002 to 2010 in North Carolina.  

Fig. 6. Annual average spatial distribution of PM2.5 from ten sources in 2002 and 2010 in North Carolina and differences between these two years, μg/m3.  
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3.3.3. Temporal distributions 
PM2.5 sources show strong seasonal variations (Fig. 7). Contributions 

of diesel vehicles, gasoline vehicles and coal-fired power plants are 
higher in winter than in summer due to lower mixing heights in winter. 
Ammonium nitrate is also high as its formation is thermodynamically 
more favorable at low temperatures (Russell et al., 1967; Stelson and 
Seinfeld, 1967). Ammonium sulfate and ammonium bisulfate are higher 
in summer than in winter as SO2 is rapidly oxidized, and it is lost more 
slowly to wet deposition. Of interest, ammonium bisulfate increases 
more in the summer than ammonium sulfate as the amount of sulfate 
formed becomes greater than the ammonia available to form ammonium 
sulfate, leading to higher aerosol acidities (Shi et al., 2017; Weber et al., 
2016). The concentration of soil dust is also higher in summer. 

3.3.4. Source apportionments evaluation 
Since it is hard to evaluate the apportionment results because direct 

observations of source impacts are not available, we compare our results 
with air pollutant emission trend data for 2002 to 2010 in North Car
olina and previous apportionment of PM2.5 results in southeastern 
United States (EPA, 2021; Zhai et al., 2017). For biomass burning, 
annual averaged biomass burning impacts from our source apportion
ment study are compared with annual burned area due to absence of 
prescribed burning emissions during 2002–2007 in the trend data (Na
tional Interagency Fire Center). Biomass burning impacts and burned 
area increase from previous year to recent year and are positively 
correlated with an R2 = 0.71 (Fig. 8). Mobile emissions decrease 37% 
while the impacts from gasoline and diesel vehicles decrease 30%. The 
similarity is evidenced by the R2 of 0.88 (Fig. 8). Coal-fired power plant 

contributions decrease by 67% while fuel combustion from electricity 
utility decreases by 66%. The decreases of ammonium sulfate and 
ammonium bisulfate can be explained by decreases of SO2 emissions 
(Fig. 8). Meanwhile, reduction of ammonium nitrate is due to NOx 
emission controls, including those due to the North Carolina Clean 
Smokestacks Act (North Carolina Department of Environmental Qual
ity). Ammonium nitrate impacts are positively correlated with NOx 
emission with an R2 = 0.75 (Fig. 8). To evaluate our novel method, we 
also compare our results with long-term source apportionments of PM2.5 
study in Georgia based on observations and CMB modeling (Zhai et al., 
2017). The study shows the largest contributions are from sulfate, 
biomass burning, and other OC and it is consistent with our results. 
Biomass burning is increasing in North Carolina while the Georgia study 
found decreases. The difference is tied to different burned area trends in 
North Carolina and Georgia. However, the relative contributions of 
biomass burning increased due to the reduced PM2.5 in both studies. 
Decreases are detected in the other sources. Both of the studies found 
similar temporal patterns. In previous study, contributions from primary 
coal combustion and vehicles are spatially heterogeneous while 
ammonium sulfate, ammonium bisulfate and ammonium nitrate are 
homogeneous. Our results show that primary PM2.5 from coal combus
tion and PM2.5 from vehicles are concentrated in urban areas, especially 
near the road and power plants. For ammonium sulfate, ammonium 
bisulfate and ammonium nitrate, high concentrations are in south
eastern North Carolina with more homogeneous pattern. As demon
strated, this method provides additional spatial information beyond 
applying CMB in measurement locations and interpolating those results. 

Fig. 7. Monthly average source contributions to total PM2.5 mass: 2002–2010, μg/m3.  
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4. Conclusions 

Daily pollutant concentrations of total and speciated PM2.5 and five 
gaseous pollutants are estimated in North Carolina at 12 km horizontal 
resolution from 2002 to 2010 using a data fusion method. The fused data 
are used in the CMBGC-Iteration source apportionment method to pro
vide of PM2.5 impacts from ten sources across the state. The results show 
a significant decrease over time in both PM species and source impacts, 
especially from diesel vehicles and coal combustion. Secondary pollut
ants are dominant over the state, though sulfate, nitrate, and the related 
ammonium, are decreasing. The methods presented in this study provide 
a long period of pollutant concentrations and source impacts that are 
readily useable for long-term, state-wide epidemiologic studies. The 
pollutant exposure and source impacts fields are presently being used in 
a health study to identify the associations between PM2.5 components 
and sources and coronary heart disease (McGuinn et al., 2017; Slawsky 
et al., 2021). The approach is readily applicable across a variety of 
spatial scales when observations and CTM results are available. 
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