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A B S T R A C T

A generalized, user-friendly data fusion method (Gen-Friberg) to reduce differences between chemical transport 
models (CTMs) and observational data is implemented to be compatible with widely used CTMs such as CMAQ, 
GEOS-Chem, and WRF-Chem. Key source code improvements included encapsulating the data fusion algorithm 
within a single function and enabling parallel processing to minimize runtime for long simulations. We applied 
the data fusion method to CMAQ outputs and observations from 2010 to 2019 to evaluate the method’s per
formance. After data fusion, pollutant concentration fields showed improved performance. Additionally, we 
assessed the generalizability of the data fusion method by demonstrating its effectiveness in reducing bias in the 
GEOS-Chem and WRF-Chem concentration fields using evaluations based on 2017 simulations. Comparisons 
across CMAQ, GEOS-Chem, and WRF-Chem with and without data fusion demonstrate that data fusion reduces 
inter-model discrepancies, yielding more consistent concentration fields for use in health and policy assessments.

1. Introduction

Accurate concentration fields of ambient air species are critical to 
performing epidemiologic analyses and understanding inequalities in 
potential exposures among various socioeconomic communities. Such 
fields are central to environmental justice and public health studies for a 
thorough understanding of morbidity and mortality impacts from air 
pollution exposure.

Data from observational networks (CSN; CASTNET; Ng et al., 2022; 
Hand et al., 2011; EMEP, 2018; CNEMC), consisting of monitors 
managed by national, state, local, and tribal agencies, are often used to 
assess air pollution levels and their spatiotemporal patterns. However, 
due to high operation costs, monitors in these networks tend to be sparse 
in their spatial coverage and are also limited in their measurement fre
quencies, as some particulate matter (PM) species are not reported or 
recorded for each day but instead once every three to six days (CSN). The 
limited spatial and temporal coverage of monitoring data adds un
certainties when directly used in epidemiological studies, particularly if 
spatial gradients are significant.

To address the problem, mathematical interpolation methods can be 

applied to estimate the concentration field from observation data (Lin 
et al., 2018; Li et al., 2016). However, the interpolation methods do not 
consider the physics and chemistry behind the pollution transport and 
evolution, adding to uncertainty, especially in areas with limited 
monitoring sites. Chemical transport models (CTMs), such as 
GEOS-Chem (GC) (Bey et al., 2001), the Community Multiscale Air 
Quality Modeling System (CMAQ) (Byun and Schere, 2006), and the 
Weather Research and Forecasting (WRF) model coupled with Chemis
try (WRF-Chem) (Grell et al., 2005), take into account emissions, 
meteorology, and chemistry and can provide complete spatiotemporal 
concentration fields over their domains of application. GEOS-Chem is a 
global CTM to simulate atmospheric composition, currently developed 
and maintained by Harvard University and Washington University in St. 
Louis. It is driven by reanalysis meteorological data from NASA’s Global 
Modeling and Assimilation Office (GMAO). In contrast, CMAQ and 
WRF-Chem are primarily used for regional air quality simulations. 
CMAQ is developed and maintained by the U.S. Environmental Protec
tion Agency (EPA) and uses preprocessed meteorological fields from 
models, such as WRF. Once the meteorological simulations are 
completed, CMAQ can be run independently, which allows for faster air 
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quality simulations and sensitivity analyses without rerunning the 
meteorology. So, the model is commonly used for evaluating emission 
control strategies and conducting attainment tests. WRF-Chem, devel
oped by the National Center for Atmospheric Research (NCAR) and the 
National Oceanic and Atmospheric Administration (NOAA), simulates 
atmospheric composition along with meteorology, explicitly represent
ing two-way interactions between chemical and meteorological pro
cesses. The model is advantageous for research on 
chemical-meteorological interactions, such as aerosol-radiation-cloud 
interactions (Jerez et al., 2021; Yang et al., 2020; Archer-Nicholls 
et al., 2016). In addition to providing continuous spatiotemporal con
centration fields, CTMs can also simulate counterfactual scenarios to 
understand health impacts from specific pollutant sources or emission 
control policies (Skipper et al., 2023; Henneman et al., 2017). Unfor
tunately, CTM outputs are uncertain due to uncertainties in meteoro
logical inputs (Gilliam et al., 2015; Garcia-Menendez et al., 2013), 
simplifications in emissions’ vertical and temporal profiles (Lawal et al., 
2022; Li et al., 2023a), inaccuracies in emission intensity estimates 
(Hanna et al., 2005; Zhao et al., 2017), and reduced complexity of 
chemical species and mechanisms (Dodge, 2000; Cao et al., 2021; 
Huijnen et al., 2019).

To address the limitations and leverage the strengths of both obser
vations and CTMs, data fusion methods are employed to enhance the 
accuracy of concentration field estimations. Traditional data fusion 
methods often use statistical and geographical interpolation to fuse 
different data sources, including satellite retrievals, CTM simulations, 
and observations. Van Donkelaar et al. (van Donkelaar et al., 2019) 
generated surface concentration fields of PM2.5 chemical components by 
integrating aerosol optical depth (AOD) from multiple satellite products 
and GEOS-Chem simulations. Geographically Weighted Regression 
(GWR) was then applied to merge observational data with those con
centration fields, reducing the bias between observations and the 
modeled concentrations. Xue et al. (2017) developed a three-step 
method to fuse satellite, CMAQ, and observation data. The linear 
mixed effect model was applied to predict surface PM2.5 from AOD 
retrieval and to calibrate the CMAQ PM2.5 concentration field using 
observations as the reference. Then, a maximum likelihood estimator 
integrated the AOD-derived and the calibrated-CMAQ fields to derive a 
combined concentration field. The bias of the combined concentration 
field was additionally reduced by adding a Kriging-interpolated residual 
term. Senthilkumar et al. (2019) calculated a normalized dimensionless 
ratio between observations and their corresponding CMAQ simulations 
at monitoring sites. They used the Inverse Distance Weighting method to 
spatially interpolate the ratio, which they then multiplied with the 
intensity-adjusted CMAQ simulations to generate a fused concentration 
field.

Recently, machine learning and deep learning have been increas
ingly applied to integrate observational data with chemical transport 
models and other data sources. These approaches are often regarded as 
“black boxes” due to their complex nature. After selecting the model 
architecture, such as the random forest or convolutional neural network, 
the model is trained by providing input features, which typically include 
simulation outputs from CTMs, meteorological indicators, and 
geographical static data, along with the corresponding target values, 
generally observations. For instance, Lyu et al. (2019) conducted a 
stacking ensemble learning framework that included random forest, 
neural network, gradient boosting machine, and general linear models 
to fuse CTM and observation data. Simulated data from CMAQ and other 
supporting variables derived from meteorological fields and land-use 
data were used as input features, while observations were used as 
response variables. Input features and observations were collected to 
train these machine learning models, and the models’ predictions were 
ensembled to predict the fused concentration field. The field’s bias was 
additionally reduced by adding a Kriging interpolated residual term as 
in Xue et al. (2017). Tang et al. (2024) applied a random forest model to 
fuse satellite AOD retrievals and WRF-Chem outputs with observation 

data. The satellite retrievals, meteorological data, elevation data, 
emission data, and concentration outputs are re-gridded at the same 
resolution and utilized as random forest input features. The observa
tional data were used as target values for the random forest model to 
reduce the bias between model predictions and observations. Li et al. 
(2023b) trained a recurrent spatiotemporal deep-learning model using 
WRF and CMAQ outputs as input features and monitored ozone (O3) as 
target values. The deep learning model was trained by reducing the bias 
between observations and corresponding concentration predictions.

Despite the growing and important uses of data fusion-generated 
concentration fields for health and public policy research, few offer 
open-source, well-documented code. Additionally, there is a lack of 
shared model architectures and trained weights for machine learning 
and deep learning approaches. Since the software for data fusion 
methods is generally not publicly available, researchers can only access 
the provided fused data, making it difficult to apply the data fusion 
methods to their own simulations. A good example of an open-sourced 
data fusion software is the tool developed by Li et al. (2019), which is 
available in the Air Benefit and Cost and Attainment Assessment System. 
The software is wrapped with a user-friendly graphical user interface 
(GUI) and provides different data fusion methods, including enhanced 
Voronoi Neighbor Averaging (eVNA) (Ding et al., 2016) and Downscaler 
(DS) (Berrocal et al., 2010). Its effectiveness in reducing the CMAQ 
model’s bias has been demonstrated in previous studies (Yang et al., 
2020; Yuan et al., 2023). The eVNA approach uses Voronoi Neighbor 
Averaging (VNA) (Kreveld et al., 1997) interpolation method to produce 
concentration fields from observations. These interpolated concentra
tions are then scaled by the ratio of the modeled concentration in the 
CMAQ grid cell to that in the CMAQ grid cell containing the monitor. 
The DS method employs a Bayesian hierarchical model to correct biases 
in CMAQ outputs using observations. It assumes prior distributions for 
time-varying additive and multiplicative biases. It also models spatially 
and temporally varying additive and multiplicative adjustment terms 
using Gaussian processes. Markov chain Monte Carlo, including 
forward-filtering and backward-sampling, estimates model parameters 
by updating priors with observations. The biases estimated by the model 
are then used to correct CMAQ simulations both spatially and tempo
rally. However, this software, like most other examples, has limited 
generalizability because it focuses on integrating only a single CTM with 
observations rather than being adaptable to other CTMs. CTMs generally 
share a similar output data structure, often in Network Common Data 
Form (NetCDF) format, and typically provide hourly grid-based surface 
concentration fields. Standard daily pollutant metrics can then be 
derived from these hourly outputs and saved in NetCDF format through 
post-processing. Thus, migrating a data fusion method from one model 
to another can be relatively straightforward if the input data format is 
well-defined, with each variable stored as a tensor (high-dimensional 
matrix) along the spatial and temporal dimensions and accompanied by 
metadata specifying the map projection used and time information such 
as beginning date and time, frequency and ending date and time.

To improve the transparency and efficiency for researchers who are 
interested in implementing data fusion methods or using the data fusion 
outputs from various CTMs for their research, we develop and imple
ment a general data fusion framework based on the Friberg et al. (2016)
data fusion method (Gen-Friberg version 1.0). Friberg et al.‘s data fusion 
method has shown better performance than different 
monitor-interpolation methods, air quality models, and hybrid modeling 
methods that reduced CTM bias using receptor model outputs (Yu et al., 
2018). The data fusion method by Frieberg et al. has been widely used as 
part of several ensemble data fusion approaches (Bates et al., 2018; 
Huang et al., 2018) and health studies (Maji et al., 2024a, 2024b; Pic
ciotto et al., 2024). In this study, we developed a framework that unifies 
the input data format, offering a user-friendly solution for data fusion. 
To ensure most users can easily use the data fusion method, we encap
sulated the algorithm into one function that supports multiple CTMs, 
including CMAQ, WRF-Chem, and GEOS-Chem. For computational 
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efficiency, the data fusion model can be executed in parallel to speed up 
the process for long simulations. Relevant post-analysis tools were 
developed for bare CTM and post data fusion performance evaluation. 
This study demonstrated the ease and broad applicability of this pro
posed framework and software tool for data fusion using several CTMs 
and monitoring networks. The model can be downloaded from the 
GitHub repository along with its auxiliary tools.

2. Material and methods

The new data fusion tool, Gen-Friberg version 1.0 (GF-1), provides 
an effective and efficient method to fuse daily observational and CTM- 
simulated data. Given that the data may come from various sources or 
undergo different processing methods, we standardized the input data 
formats. Users are responsible for preparing their data in the defined 
format to ensure the model can be successfully executed.

2.1. Input data (observation and CTM) and format requirements

For observational data, users should calculate the daily observational 
concentrations based on aggregating methods such as mean, maximum, 
or daily maximum 8-h. Then, these data to be utilized in data fusion 
should be combined as the observational inputs in one comma-separated 
values (CSV) format file. For each observational record, the unique ID 
for the monitoring site and its coordinates (latitude and longitude) need 
to be included to provide spatial information. The observation time 
should be recorded in YYYY-MM-DD format (e.g., 2021-01-01 for 
January 1st, 2021). The time zone in the observational data must be the 
same as the one in the CTM or post-processed CTM outputs. For example, 
both datasets can use the local standard time. The data fusion outputs 
will inherit the time zone of the input data.

The CTM data must be in NetCDF format. Hourly (or sub-hourly) 
CTM data must be converted to daily data using the same aggregation 
method as the observational data. For CMAQ, the (hr2day) 
post-processing program provided by the CMAQ code, which generates 
gridded daily concentrations from hourly data, is an effective tool for 
this process. We provided similar utilities for processing GEOS-Chem 
and WRF-Chem hourly data. The daily CTM data covering the study 
period may exist in multiple files due to discontinuous CTM simulation 
or post-processing. We required combining all the CTM data in one 
NetCDF file to standardize CTM data input. A utility for combining 
multiple CTM files into a single NetCDF file is provided (data format 
details are on the GitHub page).

In this study, we applied GF-1 to fuse CMAQ simulation results and 
observations for daily average PM2.5, daily maximum 8-h average 
(MDA8) O3, and daily average NO2 in the contiguous United States 
(CONUS) from 2010 to 2019 and evaluated its performance. We 
collected the observational data for PM2.5, O3, and NO2 from EPA’s Air 
Quality System (AQS) monitoring sites (Fig. 1) (AQS). CMAQ data was 
obtained from the Air QUAlity TimE Series Project (EQUATES) (U.S. 
EPA, 2021) data repository over the same time frame and spatial 
domain. The EQUATES data is constructed using WRF v4.1.1 and CMAQ 

v5.3.2 and provides 12-km resolution gridded fields of pollutant con
centrations over CONUS. Also, we included a one-year (2017) CONUS 
GEOS-Chem simulation with 0.5◦ (latitude) × 0.625◦ (longitude) reso
lution and a one-year (2017) WRF-Chem simulation with a 36-km res
olution over CONUS. The use of GEOS-Chem and WRF-Chem 
demonstrates the ease of applicability of GF-1 on other CTMs with a 
simple function overwrite, details of which are provided in Supple
mentary Information of Text S2, Text S3, and the GitHub page.

2.2. Data fusion method and implementation optimization

GF-1 is an advancement of the Friberg et al. (2016) approach, which 
includes three general steps to fuse observational and simulation data to 
reduce spatiotemporal biases of CTM outputs. In summary, the first two 
steps focus on minimizing spatial and temporal biases respectively, 
while the third step integrates their outputs to generate the final fused 
fields.

The fused concentration field in the first step is obtained using either 
a zero-intercept linear or an exponential equation, derived by comparing 
annual mean observational data with CTM data. The selected equation 
aims to minimize yearly bias. Then, Kriging is conducted to reduce the 
spatial bias in the simulation. Since the zero-intercept linear regression 
is a special case of exponential regression (the exponent is 1), we 
combine these two cases and mathematically express the first step as 
follows. 

OBSm = α × CTM(s)m
β
+ ε (1) 

FC(s) = αyear × CTM(s)
β
+ ε (2) 

FC1(s, t) =
(

OBSm(t)
OBSm

)

krig
× FC(s) (3) 

Equation (1) is a regression equation for adjusting the annual mean 
of CTM predictions, where OBSm is the monitor’s annual mean value, 
CTM(s)m is the annual mean CTM concentrations at corresponding 
monitor locations. ε denotes the regression residual, minimized through 
the least squares method during the estimation of regression parameters 
α and β. This regression method is expected to capture the linear (when 
β = 1) or non-linear relations between observations and corresponding 
co-located simulations. Friberg et al.‘s study did not propose a selection 
algorithm for linear or exponential regression. For GF-1, we implement 
both modes of regression (i.e., linear and exponential). An algorithm 
that uses 10-fold cross-validation for selecting the optimal regression is 
provided (default mode). The regression with the lowest root mean 
square error (RMSE) is automatically selected for CTM adjustment. In 
Equation (2), FC(s) is the adjusted annual mean gridded CTM concen
tration (CTM(s)) over the study domain for each grid cell at location s, 
preserving the annual spatial distributions from CTM with adjusted in
tensity. The regression parameter β (note for linear regression β = 1) is 
derived based on all averaged observations at different monitors and 

Fig. 1. EPA AQS PM2.5, O3, and NO2 monitoring sites number (M) and locations through the study period (2010–2019). The blue rectangle indicates the EQUATES 
domain. For PM2.5, the green and blue dots show the locations of Federal Reference Method (FRM)/Federal Equivalent Method (FEM) monitors and non-FRM/FEM 
monitors, respectively.
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their co-located annual average CTM simulations (Equation (1)) over all 
studied years. Then, the regression parameters αyear are estimated based 
on annual averaged observations and their co-located annual average 
CTM simulations for each year (Equation (2)). In Equation (3), OBSm(t)
are the daily observations at monitor m on day t and the normalized 
observations are interpolated by the Kriging interpolation to derive the 
FC1. We implemented the Kriging interpolation using the 2D ordinary 
Kriging function (OrdinaryKriging) in the PyKrige package (Murphy 
et al., 2024) with the exponential variogram model. For the grid cells 
where monitors are located, this function ensures that interpolated 
concentrations remain highly correlated with the observations. For lo
cations without monitors, it estimates concentrations based on the 
spatial correlation with nearby observations, producing a smoothed 
surface that reflects the spatial patterns of the observations. Then, the 
interpolated normalized observations are multiplied by the annual 
intensity-adjusted CTM concentration field (FC(s)) to reduce the spatial 
distribution difference between simulations and observations.

The second step of the data fusion method mainly focuses on 
reducing the seasonal bias in CTM simulation results. First, the daily 
CTM results are adjusted using Equation (4), where CTM(s, t) is the daily 
CTM data. FC(s) and CTM(s) are the annual spatial averages as before. 

CTM(s, t)adj = CTM(s, t) ×
FC(s)

CTM(s)
(4) 

CTMadj(t) =

∑M

m=1
CTMadj(m, t)

M
(5) 

OBS(t) =

∑M

m=1
OBSm(t)

M
(6) 

A seasonal ratio βseason, which is the ratio of CTMadj(t) to OBS(t)
(calculated by Equations (5) and (6), respectively) for each Julian day jt, 
is used to train the following trigonometric sinusoidal function (Equa
tion (7)): 

CTMadj(t)
OBS(t)

= βseason(jt) = e
A×cos

[
2π

365.25 (jt− jtmax)

]

+ ε (7) 

The ratio captures the seasonal variation of both modeled and 
measured data sets. The period of the trigonometric function is 365.25 
days, which is derived from averaging the total number of days over a 
four-year cycle. A and jtmax are parameters derived from the regression 
by minimizing the regression residual ε. jt is the Julian date of day t.

After adjusting the daily CTM results and developing the temporal 
regression function, the fused-concentration field in the second step 
(FC2) is calculated as follows (Equation (8)): 

FC2(s, t) = CTM(s, t)adj × βseason(jt) (8) 

In the third step, the method optimally integrates the results from the 
first and second steps to produce the final data fusion output. For grid 
cell location s, the method estimates the observation’s correlations to 
FC1 and FC2 separately. Then, the method uses these correlations to 
derive weights for calculating the weighted average of FC1 and FC2 as 
the final combined data fusion result. To calculate the weighting factor 
for FC1, which has spatial information provided by interpolated obser
vations, the method uses an exponential correlogram equation to esti
mate spatial correlations for each CTM grid cell. First, the method 
calculates the distance d and Pearson correlation value, Robs, between 
each monitor pairing. Parameters Rcoll and r are then determined based 
on these values using the exponential correlogram equation as follows 
(Equation (9)): 

Robs(d) = Rcolle−
d
r + ε (9) 

Rcoll is the intercept, which represents instrumentation error, while r 
is the distance at which the Robs has an e-fold decrease. ε is the regression 
residual, which can be minimized by fitting given values of Robs(d) and 
their corresponding d. Then, for any CTM grid location denoted by s on 
day t, the correlation weighting factor R1(s, t) for FC1 is estimated by 
Equation (10): 

R1(s, t) = Rcolle−
x(s,t)

r (10) 

where x(s, t) is the distance between grid cell location s and its closest 
monitor with data collected on day t. For FC2, the spatial information is 
provided by the CTM. The method evaluates the CTM’s performance in 
predicting spatial concentration distribution by calculating the mean 
Pearson correlation between the observation and CTM prediction at 
included monitors (Equation (11)). 

R2 =
1
M

∑M

m=1
corr(OBSm,CTMm) (11) 

where OBSm is the time series of observational data at monitor m over 
the entire study period, CTMm is the time series of associated CTM 
predictions, and corr is the Pearson correlation coefficient defined in 
Text S1. Then, a combined weight factor is calculated as follows 
(Equation (12)). 

W(s, t) =
R1(s, t) × (1 − R2)

R1(s, t) × (1 − R2) + R2 × (1 − R1(s, t))
(12) 

The weight factor evaluates the confidence in using the FC1 results at 
grid cell location s on day t. When the area is near the monitor, R1 is 
dominant, leading to a higher weight W. It suggests placing more trust in 
FC1, which includes the interpolated observations for spatial concen
tration distribution estimation. For locations far from the monitors, FC2, 
which represents the CTM with seasonal correction, plays a dominant 
role in the data fusion. With the weight factor W, the method uses the 
weighted average on FC1 and FC2 to calculate the ultimate data fusion 
results FCopt (Equation (13)). 

FCopt = W(s, t) × FC1(s, t) + (1 − W(s, t)) × FC2(s, t) (13) 

Global regression parameters are calculated first (i.e., β, Rcoll, r, A, 
and jtmax), before proceeding with the steps of fusing the CTM simula
tion data with the corresponding yearly observation data set. After 
determining the parameters, the yearly data fusion processes for 
different years were independent from each other, so it was imple
mented in parallel to speed up long-period data fusion.

2.3. Performance evaluation

We first evaluated the CMAQ and data fused-CMAQ performances by 
comparing results to observational data using the metrics suggested by 
Emery et al. (2017) (the details of the criteria are in Text S1) to show the 
effectiveness of the data fusion algorithm. Improved performance is 
expected after data fusion. To estimate the uncertainty of the data fusion 
method, we conducted a 5-fold cross-validation. For each fold, we 
withheld 20 % of the observational data and then fused the remaining 
80 % of observations with CMAQ data. The performance was evaluated 
based on the 20 % of observations not used in data fusion. Two with
holding strategies were employed: random withholding and site-wise 
withholding. The random withholding withheld a portion of observa
tions from each monitor, assessing how well the resulting fields capture 
temporal variations. The site-wise method withheld observations from 
20 % of the monitoring sites and fused observations from the remaining 
monitors with CMAQ data. The performance of the method was evalu
ated on the observations from 20 % withheld monitors to assess how 
well the method captures spatial patterns. Cross-validation and data 
withholding only require pre-processing of observational data and 
post-analysis of data fusion outputs, without any modifications to the 
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data fusion code itself. Therefore, users can easily implement scripts for 
uncertainty evaluation by calling the data fusion functions with different 
observational data inputs in each fold, following their own withholding 
strategies. Example scripts for these two withholding strategies used in 
the study are provided to assist with these uncertainty evaluations.

2.4. Application of Gen-Friberg to other CTMs

We applied GF-1 to 2017 simulations with GEOS-Chem and WRF- 
Chem over CONUS using 0.5◦ (latitude) × 0.625◦ (longitude) and 36- 
km grid resolutions, respectively, to demonstrate its generalizability 
(the domain boundaries are shown in Fig. S1). We conducted a 5-fold 
cross-validation using both random and site-wise withholding to assess 
differences in performance when using GF-1 with different CTMs. 
Additionally, we compared the GEOS-Chem and WRF-Chem results, 
both before and after data fusion, to 2017 CMAQ simulations matching 
the nearest grid cells. For each GEOS-Chem or WRF-Chem grid cell, we 
identified the closest CMAQ grid cell and compared their simulated 
pollutant concentrations. To understand air pollutant exposure dis
crepancies among different models, we focused our comparisons on grid 
cells within the CONUS region. This comparison allowed us to assess the 
differences in pollutant simulations among different CTMs or data fused- 
CTMs results, which are essential for better understanding the confi
dence and uncertainty in concentration fields used for health impact 
assessments.

3. Results

Here, we analyzed and discussed the global parameters derived by 
analyzing CMAQ and observational data and showed how they affect the 
data fusion process. Then, we evaluated the GF-1’s effectiveness in 
reducing concentration biases and the model uncertainty when applied 
to CMAQ data. We also discussed GF-1’s performance when applied to 
GEOS-Chem and WRF-Chem and compared the results with those from 
its application to CMAQ.

3.1. Global parameters used in data fusion

We used the “default mode” and found that the linear regression had 
a lower RMSE than the exponential regression in step 1. Notice that the 
implementation of exponential regression involved numerically deter
mining the optimal regression parameters, while the linear regression 
model relied on an analytical solution. Therefore, in our implementa
tion, linear regression was treated separately from exponential regres
sion, despite mathematical derivations suggesting a subset relationship. 
The regression parameters developed from the combined 10-year data 
set of CMAQ and observations showed that the CMAQ simulated the 
magnitude of annual averaged O3 and PM2.5 with slopes (α) of 1 and 
0.98, respectively (Table 1). However, the slope of linear regression for 
NO2 was 1.12, which indicated that CMAQ underestimated NO2 by 12 
%. For each yearly slope derived by linear regressions of annual CMAQ 
and observations (Table S1), we also found that O3 and PM2.5 simulation 
from CMAQ showed a good performance on capturing the intensity with 
slopes close to 1 in all selected years, while CMAQ tended to underes
timate NO2 from 2014 to 2019.

For seasonal ratio correction, we derived the following function 
(Equation (14)) by taking the logarithm of Equation (7): 

log
CMAQadj(jt)

OBS(jt)
= A × cos

[
2π

365.25
(jt − jtmax)

]

(14) 

A, the amplitude indicates the relative ratios between CMAQ and 
observation in the seasonal adjustment (Table 1). jtmax, is the Julian day 
when the ratio difference between observations and CMAQ reaches its 
maximum. All three pollutants showed large differences in the summer 
or earlier fall season (jtmax of PM2.5, O3, and NO2 are in July, September, 
and August separately) by analyzing CMAQ simulations from 2010 to 
2019. Around jtmax, positive A for PM2.5 indicated that the daily spatial- 
averaged CMAQ had overestimations, while negative A for O3 and NO2 
showed that CMAQ predictions were slightly lower than the 
observations.

Rcoll and r represent the correlation between observations from 
different monitors. PM2.5 had the highest Rcoll, as its monitoring network 
is denser than the networks for O3 and NO2. With more monitors close to 
each other, providing additional training data points in the exponential 
correlogram Equation (9), Rcoll was more accurately estimated. NO2 had 
the lowest Rcoll, indicating that NO2 correlations, even between closely 
located monitors, could be low. The spatial variation of NO2 was high, 
especially for the near-road monitors. For example, near-road monitors 
upwind or downwind from the road can have significant differences in 
the NO2 concentration even if they are close to each other. Parameter r 
indicates the e-folding distance of Pearson correlation compared to Rcoll. 
The e-folding distance of O3 was nearly double that of PM2.5 despite 
similar Rcoll values, indicating that PM2.5 exhibits greater spatial het
erogeneity than O3. NO2 has the largest e-folding distance, which results 
from its low initial correlation (Rcoll). Because the correlation starts at a 
small value, the decline over distance occurs more gradually.

The data fusion method utilizes the weights W to fuse FC1 and FC2. 
Higher values of W indicate that the data fusion results are driven by 
FC1, which is based on the spatial Kriging interpolation of observational 
data. On the other hand, lower values of W indicate that the data fusion 
method weights FC2, the seasonally (i.e., temporally) corrected CMAQ 
outputs, more. We visualized the averaged weights, W, during the study 
period (Fig. 2). As expected, W was higher at locations close to monitors. 
The PM2.5 weights near the monitors were higher than the O3 and NO2 
weights. This is due to the relatively inferior performance of CMAQ 
PM2.5 simulations, which had an R value of 0.41, compared to 0.73 for 
NO2 and 0.76 for O3. With the mathematical definition of W in Equation 
(12), the weights tended to be higher when the correlation between 
CMAQ and observations was lower.

3.2. Comparisons between CMAQ and Fused-CMAQ

CMAQ and fused-CMAQ had similar spatial distributions for the 
selected species (Fig. 3). NO2 was concentrated in large cities due to 
heavy transportation. The western U.S. cities, which have high anthro
pogenic emissions and favorable meteorological conditions for O3 for
mation, such as Los Angeles, experience higher O3 levels compared to 
the eastern U.S. Complex lake and land breezes lead to higher O3 levels 
(Cleary et al., 2022) in the Great Lakes Region than surrounding regions. 
PM2.5 is higher in the southeastern U.S. and California due to prescribed 
fire and wildfire smoke, respectively (Jaffe et al., 2020). Depending on 
the species, concentration differences between averaged fused-CMAQ 
and CMAQ showed either a positive or negative bias. MDA8-O3 and 
PM2.5 in fused-CMAQ were higher than CMAQ, while NO2 in 
fused-CMAQ was lower than CMAQ. These results can be explained by 
the value of the regression slope αyear (Table S1) used for CMAQ intensity 
adjustment (Equation (2)). The intensity-adjusted CMAQ was incorpo
rated in both FC1 (Equation (3)) and FC2 (Equations (4) and (8)), driving 
the intensity of data fusion results. CMAQ had lower concentrations than 
fused-CMAQ for MDA8-O3 and PM2.5 since a slope less than 1 was 
employed to adjust fused-CMAQ concentration intensity in most years 
from 2010 to 2019. A slope greater than 1 was applied for NO2 in most 

Table 1 
Data fusion parameters for PM2.5, O3, and NO2.

A jtmax (days) α β Rcoll r (km)

PM2.5 0.07 200.70 0.98 1.0 0.80 686.49
O3 − 0.06 260.22 1.00 1.0 0.71 1298.9

NO2 − 0.16 213.73 1.12 1.0 0.49 2337.27
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years, causing the fused-CMAQ concentrations to be larger than the 
CMAQ concentrations. The absolute values of differences between 
fused-CMAQ and CMAQ were higher in the eastern U.S., where the 
observational networks were dense, leading to observations dominating 
the concentrations rather than CMAQ fields.

To assess the performance of the implemented data fusion method, 
we compared the results of CMAQ and fused-CMAQ with observations. 
For each monitor, we calculated the Pearson R (correlation coefficient) 
between CMAQ (or fused-CMAQ) results and observations (Fig. 4). 
CMAQ displayed higher correlations in the northeastern U.S. for all 
selected species. However, outside the Northeast, NO2 and O3 simula
tions had low correlations with observations in states like Wyoming and 
Colorado. PM2.5 had a lower correlation than the other species, espe
cially in the southwestern U.S. The correlations between fused-CMAQ 
and observations were higher compared to CMAQ. Fused-CMAQ and 
most observations showed strong correlations (> 0.9) for all the selected 
pollutants. However, NO2 had subpar performance compared to other 
pollutants. This can be explained by the lower number of monitors for 
NO2 measurements and the relatively lower W values (i.e., weight of 
observations) (Fig. 2). The accuracy of Kriging interpolation decreases 
when the number of observations is small or when the data has limited 
spatial coverage (CUMSPH). Given the sparse distribution of NO2 
monitoring sites, the reduced Kriging interpolation performance could 
negatively impact the data fusion performance, particularly in areas 
surrounding the monitors, where the observation interpolation domi
nated the concentration field. Additionally, the low weights W used for 

NO2 (Fig. 2) indicated that the data fusion relied more on CMAQ sim
ulations than observations, compared to other pollutants.

We evaluated the performances of CMAQ and fused-CMAQ by 
applying various statistical metrics suggested by Emery et al. (2017)
using observations and corresponding predictions at all monitors 
(Fig. S2, Table 2). The fused-CMAQ performed better on all the statis
tical metrics and reached the “goal” performance, one-third of the top 
performances in past applications of CTMs, as suggested by the study 
(Emery et al., 2017). The MDA8-O3 performance was the best, followed 
by the daily average NO2, and then the daily average PM2.5. To under
stand the main factors that impeded the fused PM2.5 performance, we 
visualized the observations and their corresponding simulations in the 
scatter plots (Fig. 5). Although fused-CMAQ effectively predicted PM2.5 
lower than 30 μg/m3, it did not perform well when observed PM2.5 levels 
were higher. Sometimes, fused-CMAQ highly overestimated PM2.5 even 
though the observed PM2.5 was low. This can be partly attributed to 
biased wind inputs, which lead to uncertainties in concentration simu
lations, particularly for wildland fire smoke. Biased wind directions can 
easily make the smoke hit or miss a monitor, leading to high biases.

3.3. Data Fused-CMAQ uncertainty

5-fold cross-validation was conducted to understand the fused- 
CMAQ uncertainty. For each fold, we evaluated the fused-CMAQ un
certainty by comparing the fused predictions with the 20 % observations 
that were not used in the data fusion process. The overall Pearson R and 

Fig. 2. The averaged weights (W) of PM2.5, O3, and NO2 that were used in combining FC1 and FC2 from 2010 to 2019. The dots indicate the locations of monitors 
utilized in the data fusion.

Fig. 3. Spatial distribution of daily average PM2.5, MDA8-O3, and daily average NO2 from CMAQ (first column), fused-CMAQ (second column). The CMAQ and fused- 
CMAQ are averaged from 2010 to 2019. The differences between the averaged fused-CMAQ and CMAQ are shown in the third column.
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RMSE of fused-CMAQ, as calculated with random and site-wise with
holding, were greatly improved compared to the original CMAQ per
formance, although the performance declined compared to the fused- 
CMAQ with all observation data (Fig. S2, Table 2). For most other sta
tistical metrics, the fused-CMAQ under different data withholding stra
tegies also performed better than CMAQ (Table 2). Additionally, the 
linear regression relationships of fused data generally had smaller 

absolute intercepts and slopes closer to 1 compared to CMAQ simula
tions, revealing that background biases and intensity differences were 
reduced with the data fusion model (Fig. 5). However, performance 
declined under site-wise data withholding when compared to random 
data withholding, particularly for PM2.5. This indicates that data fusion 
is more sensitive to gaps in spatial coverage than to gaps in temporal 
coverage of the observation data. For instance, PM2.5, which had the 

Fig. 4. Pearson correlation coefficient (R) values between simulated and observed concentrations at each monitor from 2010 to 2019 for daily average PM2.5, MDA8- 
O3, and daily average NO2.

Table 2 
Daily averaged PM2.5, MDA8-O3, and daily average NO2 performance for CMAQ, fused-CMAQ, and fused-CMAQ under random and site-wise data withholding. The 
units of MB, ME, RMSE, and CRMSE are μg/m3 for daily averaged PM2.5 and ppb for both MDA8-O3 and daily average NO2.

Species daily averaged PM2.5 MDA8-O3 daily average NO2

CMAQ Fused- 
CMAQ

Random W/ 
h

Site W/ 
h

CMAQ Fused- 
CMAQ

Random W/ 
h

Site W/ 
h

CMAQ Fused- 
CMAQ

Random W/ 
h

Site W/ 
h

MB − 0.51 − 0.66 − 0.72 − 0.65 − 0.21 − 0.97 − 0.94 − 0.94 − 1.48 − 0.42 − 0.42 − 0.42
ME 3.27 2.23 2.41 2.57 6.53 4.38 4.73 4.75 3.58 3.06 3.22 3.22

RMSE 7.82 4.56 4.87 5.38 8.45 5.82 6.32 6.33 5.40 4.59 4.78 4.78
CRMSE 7.80 4.51 4.82 5.34 8.45 5.73 6.25 6.26 5.19 4.57 4.76 4.76
NMB − 6.16 − 7.90 − 8.56 − 7.86 − 0.52 − 2.35 − 2.27 − 2.26 − 17.38 − 4.97 − 4.96 − 4.96
NME 39.32 26.80 28.56 30.94 15.77 10.57 11.44 11.48 41.94 35.84 37.66 37.72
MNB 15.82 9.84 7.97 13.75 5.06 1.52 2.11 2.12 34.07 42.26 52.10 52.16
MNE 51.13 36.98 37.02 43.34 18.97 12.41 13.67 13.72 80.07 73.53 84.55 84.65
FB − 5.59 − 4.77 − 5.40 − 3.92 1.37 − 0.32 − 0.18 − 0.18 − 11.13 2.97 3.42 3.39
FE 41.88 29.21 31.29 34.08 16.82 11.42 12.36 12.40 51.46 43.48 45.94 45.96

IOA 0.60 0.83 0.81 0.77 0.86 0.93 0.92 0.92 0.83 0.89 0.88 0.88
Pearson R 0.41 0.73 0.69 0.62 0.76 0.90 0.88 0.88 0.73 0.80 0.78 0.78
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highest weights (W) among all selected species (Fig. 2), relied more on 
Kriging interpolation of observational data. Since withholding part of 
the monitors can highly impact spatial Kriging interpolation, the PM2.5 
data fusion results were less accurate under site-wise data withholding.

Fig. 6 shows the spatial distribution of fused-CMAQ’s uncertainty. 
The uncertainty was estimated by first averaging the data fusion outputs 
from each cross-validation fold over the study time period. Then, the 
standard deviation among these averaged 5-fold outputs was calculated 
for each CMAQ grid cell. Both withholding strategies showed higher 
uncertainty near the monitors, especially in urban areas where the 
monitors were densely distributed. However, the relative magnitude of 
the standard deviation in each grid cell was much lower than the 
averaged concentration (Fig. 3), indicating the data fusion model was 
robust. The site-wise data withholding still showed a higher standard 
deviation than random data withholding. The eastern and western 
coasts of the U.S. showed higher standard deviations as monitors were 
more concentrated in these locations. Withholding the observations 
from these monitors led to high uncertainties in the data fusion outputs 
near these locations.

3.4. Data fusion for other chemical transport models

We applied GF-1 to 2017 GEOS-Chem and WRF-Chem simulations to 
evaluate the generalizability of the method and our implementation, 
and whether it is leading to similar performance trends as it did for 
CMAQ (Tables S2–S5, Figs. S3–S14).

The GEOS-Chem simulated daily average PM2.5, MDA8-O3, and daily 
average NO2 had a Pearson R of 0.37, 0.64, and 0.58, respectively. The 
fused GEOS-Chem results improved with R values of 0.63, 0.89, and 
0.68, respectively. The fused GEOS-Chem results also had a lower RMSE 
than the GEOS-Chem results. The RMSE for fused GEOS-Chem PM2.5, 
MDA8-O3, and NO2 were 7.07 μg/m3, 6.05 ppb, and 5.77 ppb, which 
were lower than the GEOS-Chem RMSE of 10.63 μg/m3, 10.75 ppb, and 

7.81 ppb. The fused GEOS-Chem under either withholding strategy also 
showed better performance than the GEOS-Chem simulated fields 
compared with observations (Table S3). Results indicated that the data 
fusion method effectively improved the GEOS-Chem model’s perfor
mance for both methods. Analyses of fused GEOS-Chem performance 
and uncertainties, similar to those conducted for CMAQ, are available in 
the Supplementary Information (Tables S2–S3, Figs. S3–S8).

A similar analysis was conducted using WRF-Chem (Tables S4–S5, 
Figs. S9–S14). The WRF-Chem simulated daily average PM2.5, MDA8-O3, 
and daily average NO2 had Pearson R values of 0.21, 0.63, and 0.62, and 
RMSE of 16.07 μg/m3, 10.77 ppb, and 8.15 ppb, respectively. The fused- 
WRF-Chem had much higher Pearson R (0.56, 0.91, 0.70 for daily 
average PM2.5, MDA8-O3, and daily average NO2, respectively) and 
lower RMSE (7.48 μg/m3, 5.30 ppb, and 5.45 ppb for daily average 
PM2.5, MDA8-O3, and daily average NO2, respectively), indicating a 
better performance. We also applied the two withholding strategies to 
demonstrate the robustness of the GF-1 and evaluate the uncertainties of 
the model (Figs. S12–S13) and found that fused-WRF-Chem under 
different data withholding strategies still has better performance than 
WRF-Chem.

3.5. Comparison of different CTMs and Fused-CTMs

By using the nearest-grid matching method, we compared the 
matched grid cell’s simulations between GEOS-Chem and CMAQ and 
between WRF-Chem and CMAQ (Fig. 7), both with and without data 
fusion. For the simulations without data fusion, CMAQ had a correlation 
R2 of 0.09, 0.62, and 0.43 with GEOS-Chem for daily average PM2.5, 
MDA8-O3, and daily average NO2 simulations, respectively. The daily 
average PM2.5 and MDA8-O3 simulation correlation between CMAQ and 
WRF-Chem was relatively low (R2 values are 0.01 and 0.38, respec
tively), while the daily average NO2 had a higher correlation (R2 =

0.49). For both comparisons, the daily average PM2.5 had the lowest 

Fig. 5. Comparisons between observations and simulations of daily averaged PM2.5, MDA8-O3, and daily averaged NO2. The dots show the simulation and the 
corresponding observations. Each fold’s comparisons in the testing dataset (observations not used in data fusion) are indicated for random and site-wise data 
withholding. The black dashed line is the unity (1:1) slope line. The red line shows the linear regression between simulation and observations. The R2 value and the 
formula of linear regressions are indicated below the figures.
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correlations among the three pollutant species. The PM2.5 predictions 
showed significant differences across different simulations, particularly 
at high concentration levels. This is likely due to large uncertainties in 
different fire emission inventories and plume rise models used in these 
chemical transport models. Correlations between fused-CMAQ and 
fused-GEOS-Chem and between fused-CMAQ and fused-WRF-Chem 
improved. The R2 between fused-GEOS-Chem and fused-CMAQ were 
0.38, 0.86, and 0.59 for daily average PM2.5, MDA8-O3, and daily 
average NO2. The R2 values between fused-CMAQ and fused-WRF-Chem 
were 0.36 for daily average PM2.5, 0.86 for MDA8-O3, and 0.66 for daily 
average NO2. As data fusion adjusted CTM outputs closer to observa
tions, the disparities were reduced between the fused CTMs.

The nearest-grid matching method is commonly used when projec
ting simulation results onto a finer-resolution grid, where each finer grid 
cell is assigned the concentration value of the nearest coarser grid cell. 
An alternative comparison approach is to regrid the simulation from 
different models onto the same grid defined by the coarsest resolution, 
and such a method is more consistent with the physical meaning of 
concentrations in chemical transport models, where each grid cell’s 
concentration value represents the spatially averaged concentration 
over the grid volume. To understand how these two different compari
son methods affect comparison results, we regridded the outputs from 
WRF-Chem, CMAQ, fused WRF-Chem, and fused CMAQ onto the GEOS- 
Chem grid, which has the coarsest spatial resolution among these 
models. Specifically, for each GEOS-Chem grid cell, we identified all 
overlapping grid cells from the other models and averaged their values 
to obtain the regridded value for that cell (Fig. S15). Overall, the com
parison results using the regridding method were generally similar to 

those obtained from the nearest-grid matching method, as the simula
tion outputs with data fusion show a higher R2 than those without data 
fusion. Comparing these two comparison approaches, the regridded 
approach yielded slightly higher R2 values across the model simulations, 
particularly for NO2 and PM2.5, likely because the averaging process 
smoothed out the influence of extreme concentration events.

4. Discussion

In this study, we implemented a generalized data fusion method for 
CTMs, the Gen-Friberg method, and applied it to CMAQ, GEOS-Chem, 
and WRF-Chem models. The fused versions of CMAQ, GEOS-Chem, 
and WRF-Chem showed improved performance compared to the orig
inal simulations, demonstrating the effectiveness of data fusion in 
reducing biases in chemical transport model outputs. To assess the un
certainty of the data fusion model, we performed 5-fold cross-validation 
using both random and site-wise data withholding strategies. For the 
CMAQ model, site-wise data withholding resulted in poorer perfor
mance than random withholding, particularly for PM2.5, suggesting that 
fused PM2.5 was more sensitive to spatial coverage than temporal 
coverage of the observation data. For GEOS-Chem and WRF-Chem, the 
cross-validation results for NO2 and O3 were similar under both with
holding strategies, while performance under site-wise data withholding 
is also poorer than random withholding for PM2.5 (Tables S3 and S5). 
Overall, cross-validation performance for all CTMs in the study was 
lower than the data fusion with all observations, as each fold was 
evaluated using observational data not included in that fold’s data 
fusion. However, the cross-validation performance still exceeded the 

Fig. 6. The standard deviation of averaged data fused-CMAQ results under random data withholding and site-wise data withholding strategies. For each grid cell 
shown in the figures, the value is the standard deviation of 5 withheld data fusion results generated by a 5-fold cross-validation process using the data fusion model.
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original simulations, indicating that the data fusion model was not 
overfitting and remained robust in predicting spatial and temporal 
patterns where observations were missing.

4.1. Applicability to assessing source impacts and source apportionment

The data fusion method implemented in this study can be used to 
assess the impacts of specific sources and for source apportionment (SA) 
of pollutants, although its use is somewhat limited.

Normally, for source impact studies, the concentration impacts 
(Δconc) can be calculated from differences of simulations with and 
without specific sources or estimated from methods such as the direct 
decoupled method (DDM) (Napelenok et al., 2006), the integrated 
source apportionment method (ISAM) (Shu et al., 2023; Cohan and 
Napelenok, 2011), O3 (Dunker et al., 2002) or particulate matter 
(Yarwood et al., 2007) source apportionment methods (PSAT or OSAT). 
An “observation-adjusted impact” can be estimated by the following 
formula (Equation (15)), which was conducted by Huang et al. (2019)
for fire-related pollutants: 

Δconcadjust =
concfused

concCTM
× Δconc (15) 

However, the assumption made by this formula to calculate 
observation-adjusted impact for specific sources is highly simplified. 
From the mathematical derivation, the formula implies that the ratio of 
fused CTM to CTM equals the ratio of fused CTM to CTM without the 
specific source (Text S4). In reality, the nonlinearity of chemical re
actions and the data fusion process can easily break the assumption that 
the ratio is the same under these two scenarios (with and without the 
source).

For source apportionment, the results from data fusion can serve as 

inputs for source apportionment models, such as chemical mass balance 
(CMB) (Miller et al., 1972) or positive matrix factorization (PMF) 
(Bhandari et al., 2022). Using fused-CTMs as inputs to CMB or PMF 
provides the spatial distribution of source contributions, unlike using 
only observations with source apportionment models, and offers greater 
computational efficiency compared to the integrated source apportion
ment method (ISAM) (Shu et al., 2023; Cohan and Napelenok, 2011) or 
DDM. For instance, Huang et al. used fused-CMAQ as the CMB input and 
demonstrated the effectiveness of such ensemble models in predicting 
the spatial distribution of PM2.5 source contributions in North Carolina 
(Huang et al., 2022).

4.2. Development of an ensemble data fusion modeling framework

The data fusion model implemented in this study can be applied 
within an ensemble modeling framework using a boosting (Schapire, 
1990; Freund and Schapire, 1997) or bagging method (Breiman, 1996) 
to further reduce the bias between simulations and observations. 
Boosting is an ensemble technique to combine different models 
sequentially. Instead of fusing the simulation with observations in one 
step, a boosting model combines the predictions of several weak data 
fusion models to create a strong data fusion model that can additionally 
reduce the simulation bias. At each step, the following model in the 
boosting framework used the previous model outputs in the boosting 
framework as one of the sources of inputs to predict the target concen
tration (observation). For instance, Senthilkumar et al. (2022) designed 
a boosting data fusion model by combining a traditional data fusion 
model with a random forest model to additionally reduce the bias. 
Bagging (including Bootstrapping and Aggregating steps) is another 
ensemble method for combining different models or data sources in a 
parallel way. In the bootstrapping step, several weak models, which will 

Fig. 7. Comparisons between CMAQ and GEOS-Chem (Column 1) or WRF-Chem (Column 3) and between fused-CMAQ and fused-GEOS-Chem (Column 2) or fused- 
WRF-Chem (Column 4) on daily average PM2.5 (first row, unit: μg/m3), MDA8-O3 (second row, unit: ppb), and daily average NO2 (third row, unit: ppb). The black 
dashed line is the unity (1:1) slope line. The red line shows the linear regression between the compared models. The R2 performance and the formula of linear 
regressions are indicated at the top of each panel.

Z. Li et al.                                                                                                                                                                                                                                        Environmental Modelling and Software 197 (2026) 106827 

10 



be used in the ensemble modeling framework, are trained. Instead of 
using the whole dataset to train models, each model is trained on a 
subset of data. Then, the predictions from individual models are com
bined by the aggregating step to produce a final prediction. For example, 
when CTM, satellite retrieval, and ground measurements are available, 
GF-1 can be applied to fuse CTM and observations as part of the 
ensemble framework. Other data fusion methods, such as those pro
posed in some previous studies (Xiao et al., 2018; Chan et al., 2021), 
could be included to fuse ground measurements with satellite retrievals. 
Then, we can easily average these two data fusion models’ results to 
generate the final data fusion field. The resulting averaged concentra
tion field integrates data from CTM, satellite retrievals, and ground 
measurements, potentially offering more realistic and robust spatio
temporal patterns of pollutant distribution. The user-friendly imple
mentation in this study offers greater flexibility and convenience for 
researchers to incorporate a variety of data and data fusion methods to 
develop an ensemble data fusion modeling framework, which can be 
used to achieve the desired performance.

4.3. Limitations

While the generalized data fusion method implemented here effec
tively reduces biases in concentration fields obtained from CTM simu
lations, certain limitations may impact how well the procedure captures 
the real spatiotemporal variations in the concentrations. First, this 
method is primarily designed for fusing CTM outputs with observations 
at a daily temporal resolution, as it was originally developed to support 
air quality exposure assessments used in epidemiological studies, such as 
estimating mortality, morbidity, or disease-specific relative risks asso
ciated with air pollution. Since healthcare claims data for emergency 
department visits or other hospital records generally are reported daily, 
the corresponding air pollution concentration fields are also desired at a 
daily temporal resolution. Accordingly, we used 365.25 days as the 
period of the trigonometric sinusoidal function in Equation (7) to cap
ture seasonal variations in air pollutants. For applications requiring 
hourly resolution, one possible solution is to incorporate diurnal varia
tions in Equation (7), for example, by using a variable amplitude with a 
24-h period instead of a fixed amplitude. Moreover, although bias is 
reduced by correcting concentration intensity spatiotemporally and 
fusing interpolated observations using Kriging interpolation and 
regression models, poor performance by the underlying CTM is only 
partially corrected. For instance, meteorological models, which provide 
input for chemical transport models, often have biases in wind simula
tions. Inaccurate wind speed and direction can affect pollutant trans
port, leading to biased concentration fields, especially for extreme 
pollution events such as fires. Incorrect wind direction can cause smoke 
to impact a monitor that would not be affected under actual meteoro
logical conditions or vice versa, such that the interpolated field will 
suffer very large biases. Wind speed also affects smoke concentrations 
through dilution and influences the timing of smoke arrival via advec
tion. To address concentration bias due to biased wind simulations, both 
observed and simulated wind data should be incorporated into the data 
fusion method. Another challenge for our data fusion method is reducing 
biases in counterfactual scenario simulations. The data fusion model 
requires both chemical transport model simulations and corresponding 
observations, so it cannot be applied to counterfactual scenarios where 
observations are missing. However, counterfactual simulations are 
critical for health impact assessment or future policy-making. To address 
this, machine learning or deep learning models that are trained with 
emission inputs, CTM simulations, and observations could be effective in 
capturing concentration responses to variations in emissions (Xing et al., 
2020; Huang et al., 2021). Additionally, the difference between CTM 
predictions and observations does not necessarily indicate that the 
predictions are inaccurate, as CTMs provide average concentrations 
within a grid cell. However, the data fusion process forces the pre
dictions at monitoring sites to closely align with observed values, which 

can also influence predicted concentrations in nearby areas. The impact 
of this alignment is more significant when fusing data into 
coarse-resolution models.

GF-1 can be applied to various CTMs to correct their biases. We 
observed that the data fused concentration fields of CTMs exhibited 
stronger correlations with each other compared to the CTM concentra
tion fields. This is because all fused concentration fields were adjusted 
toward observations. The higher correlation between different fused- 
CTM concentrations has the potential to reduce uncertainties when 
they are applied in epidemiological studies, particularly when exam
ining the correlations between pollutant exposure and health outcomes, 
morbidity, or mortality. However, notable magnitude differences per
sisted even after fusing the CTMs’ outputs with observations. Among the 
studied species, daily PM2.5 exhibited the largest disparities: fused- 
CMAQ concentrations were 59 % lower than fused-GEOS-Chem and 
46 % lower than fused-WRF-Chem, as indicated by the regression slopes 
(Fig. 7). Model resolution differences and physics, fire emission in
ventories, plume-rise schemes, and chemistry mechanisms used in those 
CTMs could explain these disparities. This raises concerns for health 
assessment studies that rely on fused concentration fields. Using 
different CTMs or resolutions, even with identical observational data, 
can yield varying estimates of mortality, morbidity, and associated 
economic impacts. This finding underscores the critical need for 
comprehensive uncertainty analyses in health studies. Such analyses 
should not only evaluate the fused concentration fields compared with 
observations but also account for discrepancies stemming from the 
choice of CTMs. Some previous studies have often overlooked this 
aspect, which could significantly influence uncertainty estimations. 
Meanwhile, underlying CTM still plays an important role in affecting the 
fused concentration intensity and spatiotemporal distributions. 
Improving the representation of physical and chemical processes within 
CTMs is essential for further reducing uncertainties in air quality-related 
health assessments. Future research should focus on harmonizing CTM 
outputs through advanced fusion techniques and systematically evalu
ating the implications of model intercomparisons for health studies.
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