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A generalized, user-friendly data fusion method (Gen-Friberg) to reduce differences between chemical transport
models (CTMs) and observational data is implemented to be compatible with widely used CTMs such as CMAQ,
GEOS-Chem, and WRF-Chem. Key source code improvements included encapsulating the data fusion algorithm
within a single function and enabling parallel processing to minimize runtime for long simulations. We applied
the data fusion method to CMAQ outputs and observations from 2010 to 2019 to evaluate the method’s per-

formance. After data fusion, pollutant concentration fields showed improved performance. Additionally, we
assessed the generalizability of the data fusion method by demonstrating its effectiveness in reducing bias in the
GEOS-Chem and WRF-Chem concentration fields using evaluations based on 2017 simulations. Comparisons
across CMAQ, GEOS-Chem, and WRF-Chem with and without data fusion demonstrate that data fusion reduces
inter-model discrepancies, yielding more consistent concentration fields for use in health and policy assessments.

1. Introduction

Accurate concentration fields of ambient air species are critical to
performing epidemiologic analyses and understanding inequalities in
potential exposures among various socioeconomic communities. Such
fields are central to environmental justice and public health studies for a
thorough understanding of morbidity and mortality impacts from air
pollution exposure.

Data from observational networks (CSN; CASTNET; Ng et al., 2022;
Hand et al., 2011; EMEP, 2018; CNEMC), consisting of monitors
managed by national, state, local, and tribal agencies, are often used to
assess air pollution levels and their spatiotemporal patterns. However,
due to high operation costs, monitors in these networks tend to be sparse
in their spatial coverage and are also limited in their measurement fre-
quencies, as some particulate matter (PM) species are not reported or
recorded for each day but instead once every three to six days (CSN). The
limited spatial and temporal coverage of monitoring data adds un-
certainties when directly used in epidemiological studies, particularly if
spatial gradients are significant.

To address the problem, mathematical interpolation methods can be
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applied to estimate the concentration field from observation data (Lin
et al., 2018; Li et al., 2016). However, the interpolation methods do not
consider the physics and chemistry behind the pollution transport and
evolution, adding to uncertainty, especially in areas with limited
monitoring sites. Chemical transport models (CTMs), such as
GEOS-Chem (GC) (Bey et al., 2001), the Community Multiscale Air
Quality Modeling System (CMAQ) (Byun and Schere, 2006), and the
Weather Research and Forecasting (WRF) model coupled with Chemis-
try (WRF-Chem) (Grell et al.,, 2005), take into account emissions,
meteorology, and chemistry and can provide complete spatiotemporal
concentration fields over their domains of application. GEOS-Chem is a
global CTM to simulate atmospheric composition, currently developed
and maintained by Harvard University and Washington University in St.
Louis. It is driven by reanalysis meteorological data from NASA’s Global
Modeling and Assimilation Office (GMAO). In contrast, CMAQ and
WRF-Chem are primarily used for regional air quality simulations.
CMAQ is developed and maintained by the U.S. Environmental Protec-
tion Agency (EPA) and uses preprocessed meteorological fields from
models, such as WRF. Once the meteorological simulations are
completed, CMAQ can be run independently, which allows for faster air
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quality simulations and sensitivity analyses without rerunning the
meteorology. So, the model is commonly used for evaluating emission
control strategies and conducting attainment tests. WRF-Chem, devel-
oped by the National Center for Atmospheric Research (NCAR) and the
National Oceanic and Atmospheric Administration (NOAA), simulates
atmospheric composition along with meteorology, explicitly represent-
ing two-way interactions between chemical and meteorological pro-
cesses. The model is advantageous for research on
chemical-meteorological interactions, such as aerosol-radiation-cloud
interactions (Jerez et al., 2021; Yang et al., 2020; Archer-Nicholls
et al., 2016). In addition to providing continuous spatiotemporal con-
centration fields, CTMs can also simulate counterfactual scenarios to
understand health impacts from specific pollutant sources or emission
control policies (Skipper et al., 2023; Henneman et al., 2017). Unfor-
tunately, CTM outputs are uncertain due to uncertainties in meteoro-
logical inputs (Gilliam et al., 2015; Garcia-Menendez et al., 2013),
simplifications in emissions’ vertical and temporal profiles (Lawal et al.,
2022; Li et al., 2023a), inaccuracies in emission intensity estimates
(Hanna et al., 2005; Zhao et al., 2017), and reduced complexity of
chemical species and mechanisms (Dodge, 2000; Cao et al., 2021;
Huijnen et al., 2019).

To address the limitations and leverage the strengths of both obser-
vations and CTMs, data fusion methods are employed to enhance the
accuracy of concentration field estimations. Traditional data fusion
methods often use statistical and geographical interpolation to fuse
different data sources, including satellite retrievals, CTM simulations,
and observations. Van Donkelaar et al. (van Donkelaar et al., 2019)
generated surface concentration fields of PMjy 5 chemical components by
integrating aerosol optical depth (AOD) from multiple satellite products
and GEOS-Chem simulations. Geographically Weighted Regression
(GWR) was then applied to merge observational data with those con-
centration fields, reducing the bias between observations and the
modeled concentrations. Xue et al. (2017) developed a three-step
method to fuse satellite, CMAQ, and observation data. The linear
mixed effect model was applied to predict surface PMy 5 from AOD
retrieval and to calibrate the CMAQ PM, 5 concentration field using
observations as the reference. Then, a maximum likelihood estimator
integrated the AOD-derived and the calibrated-CMAQ fields to derive a
combined concentration field. The bias of the combined concentration
field was additionally reduced by adding a Kriging-interpolated residual
term. Senthilkumar et al. (2019) calculated a normalized dimensionless
ratio between observations and their corresponding CMAQ simulations
at monitoring sites. They used the Inverse Distance Weighting method to
spatially interpolate the ratio, which they then multiplied with the
intensity-adjusted CMAQ simulations to generate a fused concentration
field.

Recently, machine learning and deep learning have been increas-
ingly applied to integrate observational data with chemical transport
models and other data sources. These approaches are often regarded as
“black boxes” due to their complex nature. After selecting the model
architecture, such as the random forest or convolutional neural network,
the model is trained by providing input features, which typically include
simulation outputs from CTMs, meteorological indicators, and
geographical static data, along with the corresponding target values,
generally observations. For instance, Lyu et al. (2019) conducted a
stacking ensemble learning framework that included random forest,
neural network, gradient boosting machine, and general linear models
to fuse CTM and observation data. Simulated data from CMAQ and other
supporting variables derived from meteorological fields and land-use
data were used as input features, while observations were used as
response variables. Input features and observations were collected to
train these machine learning models, and the models’ predictions were
ensembled to predict the fused concentration field. The field’s bias was
additionally reduced by adding a Kriging interpolated residual term as
in Xue et al. (2017). Tang et al. (2024) applied a random forest model to
fuse satellite AOD retrievals and WRF-Chem outputs with observation
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data. The satellite retrievals, meteorological data, elevation data,
emission data, and concentration outputs are re-gridded at the same
resolution and utilized as random forest input features. The observa-
tional data were used as target values for the random forest model to
reduce the bias between model predictions and observations. Li et al.
(2023b) trained a recurrent spatiotemporal deep-learning model using
WRF and CMAQ outputs as input features and monitored ozone (O3) as
target values. The deep learning model was trained by reducing the bias
between observations and corresponding concentration predictions.

Despite the growing and important uses of data fusion-generated
concentration fields for health and public policy research, few offer
open-source, well-documented code. Additionally, there is a lack of
shared model architectures and trained weights for machine learning
and deep learning approaches. Since the software for data fusion
methods is generally not publicly available, researchers can only access
the provided fused data, making it difficult to apply the data fusion
methods to their own simulations. A good example of an open-sourced
data fusion software is the tool developed by Li et al. (2019), which is
available in the Air Benefit and Cost and Attainment Assessment System.
The software is wrapped with a user-friendly graphical user interface
(GUI) and provides different data fusion methods, including enhanced
Voronoi Neighbor Averaging (eVNA) (Ding et al., 2016) and Downscaler
(DS) (Berrocal et al., 2010). Its effectiveness in reducing the CMAQ
model’s bias has been demonstrated in previous studies (Yang et al.,
2020; Yuan et al., 2023). The eVNA approach uses Voronoi Neighbor
Averaging (VNA) (Kreveld et al., 1997) interpolation method to produce
concentration fields from observations. These interpolated concentra-
tions are then scaled by the ratio of the modeled concentration in the
CMAQ grid cell to that in the CMAQ grid cell containing the monitor.
The DS method employs a Bayesian hierarchical model to correct biases
in CMAQ outputs using observations. It assumes prior distributions for
time-varying additive and multiplicative biases. It also models spatially
and temporally varying additive and multiplicative adjustment terms
using Gaussian processes. Markov chain Monte Carlo, including
forward-filtering and backward-sampling, estimates model parameters
by updating priors with observations. The biases estimated by the model
are then used to correct CMAQ simulations both spatially and tempo-
rally. However, this software, like most other examples, has limited
generalizability because it focuses on integrating only a single CTM with
observations rather than being adaptable to other CTMs. CTMs generally
share a similar output data structure, often in Network Common Data
Form (NetCDF) format, and typically provide hourly grid-based surface
concentration fields. Standard daily pollutant metrics can then be
derived from these hourly outputs and saved in NetCDF format through
post-processing. Thus, migrating a data fusion method from one model
to another can be relatively straightforward if the input data format is
well-defined, with each variable stored as a tensor (high-dimensional
matrix) along the spatial and temporal dimensions and accompanied by
metadata specifying the map projection used and time information such
as beginning date and time, frequency and ending date and time.

To improve the transparency and efficiency for researchers who are
interested in implementing data fusion methods or using the data fusion
outputs from various CTMs for their research, we develop and imple-
ment a general data fusion framework based on the Friberg et al. (2016)
data fusion method (Gen-Friberg version 1.0). Friberg et al.‘s data fusion
method has shown better performance than  different
monitor-interpolation methods, air quality models, and hybrid modeling
methods that reduced CTM bias using receptor model outputs (Yu et al.,
2018). The data fusion method by Frieberg et al. has been widely used as
part of several ensemble data fusion approaches (Bates et al., 2018;
Huang et al., 2018) and health studies (Maji et al., 2024a, 2024b; Pic-
ciotto et al., 2024). In this study, we developed a framework that unifies
the input data format, offering a user-friendly solution for data fusion.
To ensure most users can easily use the data fusion method, we encap-
sulated the algorithm into one function that supports multiple CTMs,
including CMAQ, WRF-Chem, and GEOS-Chem. For computational
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efficiency, the data fusion model can be executed in parallel to speed up
the process for long simulations. Relevant post-analysis tools were
developed for bare CTM and post data fusion performance evaluation.
This study demonstrated the ease and broad applicability of this pro-
posed framework and software tool for data fusion using several CTMs
and monitoring networks. The model can be downloaded from the
GitHub repository along with its auxiliary tools.

2. Material and methods

The new data fusion tool, Gen-Friberg version 1.0 (GF-1), provides
an effective and efficient method to fuse daily observational and CTM-
simulated data. Given that the data may come from various sources or
undergo different processing methods, we standardized the input data
formats. Users are responsible for preparing their data in the defined
format to ensure the model can be successfully executed.

2.1. Input data (observation and CTM) and format requirements

For observational data, users should calculate the daily observational
concentrations based on aggregating methods such as mean, maximum,
or daily maximum 8-h. Then, these data to be utilized in data fusion
should be combined as the observational inputs in one comma-separated
values (CSV) format file. For each observational record, the unique ID
for the monitoring site and its coordinates (latitude and longitude) need
to be included to provide spatial information. The observation time
should be recorded in YYYY-MM-DD format (e.g., 2021-01-01 for
January 1st, 2021). The time zone in the observational data must be the
same as the one in the CTM or post-processed CTM outputs. For example,
both datasets can use the local standard time. The data fusion outputs
will inherit the time zone of the input data.

The CTM data must be in NetCDF format. Hourly (or sub-hourly)
CTM data must be converted to daily data using the same aggregation
method as the observational data. For CMAQ, the (hr2day)
post-processing program provided by the CMAQ code, which generates
gridded daily concentrations from hourly data, is an effective tool for
this process. We provided similar utilities for processing GEOS-Chem
and WRF-Chem hourly data. The daily CTM data covering the study
period may exist in multiple files due to discontinuous CTM simulation
or post-processing. We required combining all the CTM data in one
NetCDF file to standardize CTM data input. A utility for combining
multiple CTM files into a single NetCDF file is provided (data format
details are on the GitHub page).

In this study, we applied GF-1 to fuse CMAQ simulation results and
observations for daily average PMys, daily maximum 8-h average
(MDAS8) O3, and daily average NO; in the contiguous United States
(CONUS) from 2010 to 2019 and evaluated its performance. We
collected the observational data for PM; 5, O3, and NO; from EPA’s Air
Quality System (AQS) monitoring sites (Fig. 1) (AQS). CMAQ data was
obtained from the Air QUAlity TimE Series Project (EQUATES) (U.S.
EPA, 2021) data repository over the same time frame and spatial
domain. The EQUATES data is constructed using WRF v4.1.1 and CMAQ

03, M = 1591
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v5.3.2 and provides 12-km resolution gridded fields of pollutant con-
centrations over CONUS. Also, we included a one-year (2017) CONUS
GEOS-Chem simulation with 0.5° (latitude) x 0.625° (longitude) reso-
lution and a one-year (2017) WRF-Chem simulation with a 36-km res-
olution over CONUS. The use of GEOS-Chem and WRF-Chem
demonstrates the ease of applicability of GF-1 on other CTMs with a
simple function overwrite, details of which are provided in Supple-
mentary Information of Text S2, Text S3, and the GitHub page.

2.2. Data fusion method and implementation optimization

GF-1 is an advancement of the Friberg et al. (2016) approach, which
includes three general steps to fuse observational and simulation data to
reduce spatiotemporal biases of CTM outputs. In summary, the first two
steps focus on minimizing spatial and temporal biases respectively,
while the third step integrates their outputs to generate the final fused
fields.

The fused concentration field in the first step is obtained using either
a zero-intercept linear or an exponential equation, derived by comparing
annual mean observational data with CTM data. The selected equation
aims to minimize yearly bias. Then, Kriging is conducted to reduce the
spatial bias in the simulation. Since the zero-intercept linear regression
is a special case of exponential regression (the exponent is 1), we
combine these two cases and mathematically express the first step as
follows.

OBS,, = a x CTM(s),, +¢ (€))

FC(s) = ayeqr ¥ CTM(s) + ¢ (2)
B OBS,,,(t)) —

FCl(svt) - ( Wsm krig XFC(S) (3)

Equation (1) is a regression equation for adjusting the annual mean
of CTM predictions, where OBS,, is the monitor’s annual mean value,

CTM(s),, is the annual mean CTM concentrations at corresponding
monitor locations. ¢ denotes the regression residual, minimized through
the least squares method during the estimation of regression parameters
a and . This regression method is expected to capture the linear (when
p =1) or non-linear relations between observations and corresponding
co-located simulations. Friberg et al.‘s study did not propose a selection
algorithm for linear or exponential regression. For GF-1, we implement
both modes of regression (i.e., linear and exponential). An algorithm
that uses 10-fold cross-validation for selecting the optimal regression is
provided (default mode). The regression with the lowest root mean
square error (RMSE) is automatically selected for CTM adjustment. In

Equation (2), FC(s) is the adjusted annual mean gridded CTM concen-

tration (CTM(s)) over the study domain for each grid cell at location s,
preserving the annual spatial distributions from CTM with adjusted in-
tensity. The regression parameter $ (note for linear regression = 1) is
derived based on all averaged observations at different monitors and

Fig. 1. EPA AQS PM, 5, O3, and NO, monitoring sites number (M) and locations through the study period (2010-2019). The blue rectangle indicates the EQUATES
domain. For PM, s, the green and blue dots show the locations of Federal Reference Method (FRM)/Federal Equivalent Method (FEM) monitors and non-FRM/FEM

monitors, respectively.
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their co-located annual average CTM simulations (Equation (1)) over all
studied years. Then, the regression parameters ay.,- are estimated based
on annual averaged observations and their co-located annual average
CTM simulations for each year (Equation (2)). In Equation (3), OBS(t)
are the daily observations at monitor m on day t and the normalized
observations are interpolated by the Kriging interpolation to derive the
FC;. We implemented the Kriging interpolation using the 2D ordinary
Kriging function (OrdinaryKriging) in the PyKrige package (Murphy
et al., 2024) with the exponential variogram model. For the grid cells
where monitors are located, this function ensures that interpolated
concentrations remain highly correlated with the observations. For lo-
cations without monitors, it estimates concentrations based on the
spatial correlation with nearby observations, producing a smoothed
surface that reflects the spatial patterns of the observations. Then, the
interpolated normalized observations are multiplied by the annual

intensity-adjusted CTM concentration field (FC(s)) to reduce the spatial
distribution difference between simulations and observations.

The second step of the data fusion method mainly focuses on
reducing the seasonal bias in CTM simulation results. First, the daily
CTM results are adjusted using Equation (4), where CTM(s, t) is the daily

CTM data. FC(s) and CTM(s) are the annual spatial averages as before.

FC(s)
CTM(s, t)oq; = CTM(s,t) x CTM(s) N
M
- > CTMq4(m, t) ©
CTMy(t) = MT
M
> OBSx(t) ©

OBS(t) = ’"ﬂT

A seasonal ratio f,,,,,, which is the ratio of CTM;(t) to OBS(t)
(calculated by Equations (5) and (6), respectively) for each Julian day jt,
is used to train the following trigonometric sinusoidal function (Equa-
tion (7)):

— Y
CTMeq;(t) = B (i) = eA |:365_25 (jt meax):| e )
OBS(t)

The ratio captures the seasonal variation of both modeled and
measured data sets. The period of the trigonometric function is 365.25
days, which is derived from averaging the total number of days over a
four-year cycle. A and jt,,q, are parameters derived from the regression
by minimizing the regression residual ¢. jt is the Julian date of day t.

After adjusting the daily CTM results and developing the temporal
regression function, the fused-concentration field in the second step
(FCy) is calculated as follows (Equation (8)):

FCy (37 t) = CTM(57 t)adj X ﬁsemon (Jt) ®

In the third step, the method optimally integrates the results from the
first and second steps to produce the final data fusion output. For grid
cell location s, the method estimates the observation’s correlations to
FC; and FC, separately. Then, the method uses these correlations to
derive weights for calculating the weighted average of FC; and FC3 as
the final combined data fusion result. To calculate the weighting factor
for FC;, which has spatial information provided by interpolated obser-
vations, the method uses an exponential correlogram equation to esti-
mate spatial correlations for each CTM grid cell. First, the method
calculates the distance d and Pearson correlation value, R, between
each monitor pairing. Parameters R.,; and r are then determined based
on these values using the exponential correlogram equation as follows
(Equation (9)):

d
Robs(d) = Rcollei; +e& (9)
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R, is the intercept, which represents instrumentation error, while r
is the distance at which the R, has an e-fold decrease. ¢ is the regression
residual, which can be minimized by fitting given values of R(d) and
their corresponding d. Then, for any CTM grid location denoted by s on
day t, the correlation weighting factor R, (s,t) for FCj is estimated by
Equation (10):

x(s,t)
Ri(s,t) = Reue™ 7 (10$)

where x(s,t) is the distance between grid cell location s and its closest
monitor with data collected on day t. For FC, the spatial information is
provided by the CTM. The method evaluates the CTM’s performance in
predicting spatial concentration distribution by calculating the mean
Pearson correlation between the observation and CTM prediction at
included monitors (Equation (11)).

1 M
Ry =1 ; corr(OBS,,, CTM,,) 11)

where OBS,, is the time series of observational data at monitor m over
the entire study period, CTM, is the time series of associated CTM
predictions, and corr is the Pearson correlation coefficient defined in
Text S1. Then, a combined weight factor is calculated as follows
(Equation (12)).

Ri(s,t) x (1 —Ry)

Ve = RGO % (1 - Ro) + Ro x (1 - Ri(5.0))

12)

The weight factor evaluates the confidence in using the FC; results at
grid cell location s on day t. When the area is near the monitor, R; is
dominant, leading to a higher weight W. It suggests placing more trust in
FCjy, which includes the interpolated observations for spatial concen-
tration distribution estimation. For locations far from the monitors, FC,,
which represents the CTM with seasonal correction, plays a dominant
role in the data fusion. With the weight factor W, the method uses the
weighted average on FC; and FC to calculate the ultimate data fusion
results FC,p; (Equation (13)).

FCop = W(s,t) x FCy(s,t) + (1 — W(s,t)) x FCy(s,t) (13)

Global regression parameters are calculated first (i.e., B, Reoll, T, A,
and jtmax), before proceeding with the steps of fusing the CTM simula-
tion data with the corresponding yearly observation data set. After
determining the parameters, the yearly data fusion processes for
different years were independent from each other, so it was imple-
mented in parallel to speed up long-period data fusion.

2.3. Performance evaluation

We first evaluated the CMAQ and data fused-CMAQ performances by
comparing results to observational data using the metrics suggested by
Emery et al. (2017) (the details of the criteria are in Text S1) to show the
effectiveness of the data fusion algorithm. Improved performance is
expected after data fusion. To estimate the uncertainty of the data fusion
method, we conducted a 5-fold cross-validation. For each fold, we
withheld 20 % of the observational data and then fused the remaining
80 % of observations with CMAQ data. The performance was evaluated
based on the 20 % of observations not used in data fusion. Two with-
holding strategies were employed: random withholding and site-wise
withholding. The random withholding withheld a portion of observa-
tions from each monitor, assessing how well the resulting fields capture
temporal variations. The site-wise method withheld observations from
20 % of the monitoring sites and fused observations from the remaining
monitors with CMAQ data. The performance of the method was evalu-
ated on the observations from 20 % withheld monitors to assess how
well the method captures spatial patterns. Cross-validation and data
withholding only require pre-processing of observational data and
post-analysis of data fusion outputs, without any modifications to the
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data fusion code itself. Therefore, users can easily implement scripts for
uncertainty evaluation by calling the data fusion functions with different
observational data inputs in each fold, following their own withholding
strategies. Example scripts for these two withholding strategies used in
the study are provided to assist with these uncertainty evaluations.

2.4. Application of Gen-Friberg to other CTMs

We applied GF-1 to 2017 simulations with GEOS-Chem and WRF-
Chem over CONUS using 0.5° (latitude) x 0.625° (longitude) and 36-
km grid resolutions, respectively, to demonstrate its generalizability
(the domain boundaries are shown in Fig. S1). We conducted a 5-fold
cross-validation using both random and site-wise withholding to assess
differences in performance when using GF-1 with different CTMs.
Additionally, we compared the GEOS-Chem and WRF-Chem results,
both before and after data fusion, to 2017 CMAQ simulations matching
the nearest grid cells. For each GEOS-Chem or WRF-Chem grid cell, we
identified the closest CMAQ grid cell and compared their simulated
pollutant concentrations. To understand air pollutant exposure dis-
crepancies among different models, we focused our comparisons on grid
cells within the CONUS region. This comparison allowed us to assess the
differences in pollutant simulations among different CTMs or data fused-
CTMs results, which are essential for better understanding the confi-
dence and uncertainty in concentration fields used for health impact
assessments.

3. Results

Here, we analyzed and discussed the global parameters derived by
analyzing CMAQ and observational data and showed how they affect the
data fusion process. Then, we evaluated the GF-1’s effectiveness in
reducing concentration biases and the model uncertainty when applied
to CMAQ data. We also discussed GF-1’s performance when applied to
GEOS-Chem and WRF-Chem and compared the results with those from
its application to CMAQ.

3.1. Global parameters used in data fusion

We used the “default mode” and found that the linear regression had
a lower RMSE than the exponential regression in step 1. Notice that the
implementation of exponential regression involved numerically deter-
mining the optimal regression parameters, while the linear regression
model relied on an analytical solution. Therefore, in our implementa-
tion, linear regression was treated separately from exponential regres-
sion, despite mathematical derivations suggesting a subset relationship.
The regression parameters developed from the combined 10-year data
set of CMAQ and observations showed that the CMAQ simulated the
magnitude of annual averaged Os and PMj; 5 with slopes (@) of 1 and
0.98, respectively (Table 1). However, the slope of linear regression for
NO5 was 1.12, which indicated that CMAQ underestimated NO, by 12
%. For each yearly slope derived by linear regressions of annual CMAQ
and observations (Table S1), we also found that O3 and PM, 5 simulation
from CMAQ showed a good performance on capturing the intensity with
slopes close to 1 in all selected years, while CMAQ tended to underes-
timate NO5 from 2014 to 2019.

For seasonal ratio correction, we derived the following function
(Equation (14)) by taking the logarithm of Equation (7):

Table 1
Data fusion parameters for PMy s, O3, and NOa.
A jtmax (days) a B Reoll r (km)
PM; 5 0.07 200.70 0.98 1.0 0.80 686.49
O3 —0.06 260.22 1.00 1.0 0.71 1298.9
NO, -0.16 213.73 1.12 1.0 0.49 2337.27
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CMAQq; (jt
lo M:Axcos

-7-mu.x 14
OBS(jt) (it = Jtmax) a4

2r
365.25

A, the amplitude indicates the relative ratios between CMAQ and
observation in the seasonal adjustment (Table 1). jt,q., is the Julian day
when the ratio difference between observations and CMAQ reaches its
maximum. All three pollutants showed large differences in the summer
or earlier fall season (jt;. of PM3 5, O3, and NO3 are in July, September,
and August separately) by analyzing CMAQ simulations from 2010 to
2019. Around jt;q,, positive A for PMy 5 indicated that the daily spatial-
averaged CMAQ had overestimations, while negative A for Oz and NO,
showed that CMAQ predictions were slightly lower than the
observations.

Reon and r represent the correlation between observations from
different monitors. PMs 5 had the highest Rcoy, as its monitoring network
is denser than the networks for O3 and NO,. With more monitors close to
each other, providing additional training data points in the exponential
correlogram Equation (9), Ry was more accurately estimated. NO3 had
the lowest R, indicating that NO, correlations, even between closely
located monitors, could be low. The spatial variation of NOy was high,
especially for the near-road monitors. For example, near-road monitors
upwind or downwind from the road can have significant differences in
the NO; concentration even if they are close to each other. Parameter r
indicates the e-folding distance of Pearson correlation compared to Reoj.
The e-folding distance of O3 was nearly double that of PM; 5 despite
similar Reqy values, indicating that PMy 5 exhibits greater spatial het-
erogeneity than Os. NO; has the largest e-folding distance, which results
from its low initial correlation (R¢o1). Because the correlation starts at a
small value, the decline over distance occurs more gradually.

The data fusion method utilizes the weights W to fuse FC; and FCs.
Higher values of W indicate that the data fusion results are driven by
FC1, which is based on the spatial Kriging interpolation of observational
data. On the other hand, lower values of W indicate that the data fusion
method weights FC», the seasonally (i.e., temporally) corrected CMAQ
outputs, more. We visualized the averaged weights, W, during the study
period (Fig. 2). As expected, W was higher at locations close to monitors.
The PM; 5 weights near the monitors were higher than the O3 and NO,
weights. This is due to the relatively inferior performance of CMAQ
PM, 5 simulations, which had an R value of 0.41, compared to 0.73 for
NO; and 0.76 for O3. With the mathematical definition of W in Equation
(12), the weights tended to be higher when the correlation between
CMAQ and observations was lower.

3.2. Comparisons between CMAQ and Fused-CMAQ

CMAQ and fused-CMAQ had similar spatial distributions for the
selected species (Fig. 3). NO, was concentrated in large cities due to
heavy transportation. The western U.S. cities, which have high anthro-
pogenic emissions and favorable meteorological conditions for O3 for-
mation, such as Los Angeles, experience higher O3 levels compared to
the eastern U.S. Complex lake and land breezes lead to higher Os levels
(Cleary et al., 2022) in the Great Lakes Region than surrounding regions.
PM, 5 is higher in the southeastern U.S. and California due to prescribed
fire and wildfire smoke, respectively (Jaffe et al., 2020). Depending on
the species, concentration differences between averaged fused-CMAQ
and CMAQ showed either a positive or negative bias. MDA8-O3 and
PMys in fused-CMAQ were higher than CMAQ, while NO» in
fused-CMAQ was lower than CMAQ. These results can be explained by
the value of the regression slope ay.q- (Table S1) used for CMAQ intensity
adjustment (Equation (2)). The intensity-adjusted CMAQ was incorpo-
rated in both FC; (Equation (3)) and FC; (Equations (4) and (8)), driving
the intensity of data fusion results. CMAQ had lower concentrations than
fused-CMAQ for MDAS8-O3 and PM, 5 since a slope less than 1 was
employed to adjust fused-CMAQ concentration intensity in most years
from 2010 to 2019. A slope greater than 1 was applied for NO3 in most
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Fig. 3. Spatial distribution of daily average PM, 5, MDA8-O3, and daily average NO, from CMAQ (first column), fused-CMAQ (second column). The CMAQ and fused-
CMAQ are averaged from 2010 to 2019. The differences between the averaged fused-CMAQ and CMAQ are shown in the third column.

years, causing the fused-CMAQ concentrations to be larger than the
CMAQ concentrations. The absolute values of differences between
fused-CMAQ and CMAQ were higher in the eastern U.S., where the
observational networks were dense, leading to observations dominating
the concentrations rather than CMAQ fields.

To assess the performance of the implemented data fusion method,
we compared the results of CMAQ and fused-CMAQ with observations.
For each monitor, we calculated the Pearson R (correlation coefficient)
between CMAQ (or fused-CMAQ) results and observations (Fig. 4).
CMAQ displayed higher correlations in the northeastern U.S. for all
selected species. However, outside the Northeast, NO, and O3 simula-
tions had low correlations with observations in states like Wyoming and
Colorado. PM, 5 had a lower correlation than the other species, espe-
cially in the southwestern U.S. The correlations between fused-CMAQ
and observations were higher compared to CMAQ. Fused-CMAQ and
most observations showed strong correlations (> 0.9) for all the selected
pollutants. However, NO; had subpar performance compared to other
pollutants. This can be explained by the lower number of monitors for
NO; measurements and the relatively lower W values (i.e., weight of
observations) (Fig. 2). The accuracy of Kriging interpolation decreases
when the number of observations is small or when the data has limited
spatial coverage (CUMSPH). Given the sparse distribution of NOy
monitoring sites, the reduced Kriging interpolation performance could
negatively impact the data fusion performance, particularly in areas
surrounding the monitors, where the observation interpolation domi-
nated the concentration field. Additionally, the low weights W used for

NO; (Fig. 2) indicated that the data fusion relied more on CMAQ sim-
ulations than observations, compared to other pollutants.

We evaluated the performances of CMAQ and fused-CMAQ by
applying various statistical metrics suggested by Emery et al. (2017)
using observations and corresponding predictions at all monitors
(Fig. S2, Table 2). The fused-CMAQ performed better on all the statis-
tical metrics and reached the “goal” performance, one-third of the top
performances in past applications of CTMs, as suggested by the study
(Emery et al., 2017). The MDA8-O3 performance was the best, followed
by the daily average NO,, and then the daily average PM, 5. To under-
stand the main factors that impeded the fused PMj 5 performance, we
visualized the observations and their corresponding simulations in the
scatter plots (Fig. 5). Although fused-CMAQ effectively predicted PMs 5
lower than 30 pg/m?’, it did not perform well when observed PMy 5 levels
were higher. Sometimes, fused-CMAQ highly overestimated PM5 5 even
though the observed PMy s was low. This can be partly attributed to
biased wind inputs, which lead to uncertainties in concentration simu-
lations, particularly for wildland fire smoke. Biased wind directions can
easily make the smoke hit or miss a monitor, leading to high biases.

3.3. Data Fused-CMAQ uncertainty

5-fold cross-validation was conducted to understand the fused-
CMAQ uncertainty. For each fold, we evaluated the fused-CMAQ un-
certainty by comparing the fused predictions with the 20 % observations
that were not used in the data fusion process. The overall Pearson R and
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Table 2

Daily averaged PM, 5, MDA8-O3, and daily average NO, performance for CMAQ, fused-CMAQ, and fused-CMAQ under random and site-wise data withholding. The
units of MB, ME, RMSE, and CRMSE are ug/m3 for daily averaged PM, s and ppb for both MDA8-O3 and daily average NO,.

Species daily averaged PM, 5 MDAS-O3 daily average NO,
CMAQ Fused- Random W/ Site W/ CMAQ Fused- Random W/ Site W/ CMAQ Fused- Random W/ Site W/
CMAQ h h CMAQ h h CMAQ h h
MB -0.51 —0.66 —-0.72 —0.65 -0.21 -0.97 —0.94 —0.94 —1.48 —-0.42 —0.42 —0.42
ME 3.27 2.23 2.41 2.57 6.53 4.38 4.73 4.75 3.58 3.06 3.22 3.22
RMSE 7.82 4.56 4.87 5.38 8.45 5.82 6.32 6.33 5.40 4.59 4.78 4.78
CRMSE 7.80 4.51 4.82 5.34 8.45 5.73 6.25 6.26 5.19 4.57 4.76 4.76
NMB —6.16 —-7.90 —8.56 —7.86 —0.52 —-2.35 —-2.27 —2.26 —-17.38 —4.97 —4.96 —4.96
NME 39.32 26.80 28.56 30.94 15.77 10.57 11.44 11.48 41.94 35.84 37.66 37.72
MNB 15.82 9.84 7.97 13.75 5.06 1.52 2.11 2.12 34.07 42.26 52.10 52.16
MNE 51.13 36.98 37.02 43.34 18.97 12.41 13.67 13.72 80.07 73.53 84.55 84.65
FB —5.59 —4.77 —5.40 -3.92 1.37 -0.32 -0.18 -0.18 -11.13 2.97 3.42 3.39
FE 41.88 29.21 31.29 34.08 16.82 11.42 12.36 12.40 51.46 43.48 45.94 45.96
10A 0.60 0.83 0.81 0.77 0.86 0.93 0.92 0.92 0.83 0.89 0.88 0.88
Pearson R 0.41 0.73 0.69 0.62 0.76 0.90 0.88 0.88 0.73 0.80 0.78 0.78

RMSE of fused-CMAQ, as calculated with random and site-wise with-
holding, were greatly improved compared to the original CMAQ per-
formance, although the performance declined compared to the fused-
CMAQ with all observation data (Fig. S2, Table 2). For most other sta-
tistical metrics, the fused-CMAQ under different data withholding stra-
tegies also performed better than CMAQ (Table 2). Additionally, the
linear regression relationships of fused data generally had smaller

absolute intercepts and slopes closer to 1 compared to CMAQ simula-
tions, revealing that background biases and intensity differences were
reduced with the data fusion model (Fig. 5). However, performance
declined under site-wise data withholding when compared to random
data withholding, particularly for PM, s. This indicates that data fusion
is more sensitive to gaps in spatial coverage than to gaps in temporal
coverage of the observation data. For instance, PMjy 5, which had the
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Fig. 5. Comparisons between observations and simulations of daily averaged PM, s, MDA8-O3, and daily averaged NO,. The dots show the simulation and the
corresponding observations. Each fold’s comparisons in the testing dataset (observations not used in data fusion) are indicated for random and site-wise data
withholding. The black dashed line is the unity (1:1) slope line. The red line shows the linear regression between simulation and observations. The R? value and the

formula of linear regressions are indicated below the figures.

highest weights (W) among all selected species (Fig. 2), relied more on
Kriging interpolation of observational data. Since withholding part of
the monitors can highly impact spatial Kriging interpolation, the PMs 5
data fusion results were less accurate under site-wise data withholding.

Fig. 6 shows the spatial distribution of fused-CMAQ’s uncertainty.
The uncertainty was estimated by first averaging the data fusion outputs
from each cross-validation fold over the study time period. Then, the
standard deviation among these averaged 5-fold outputs was calculated
for each CMAQ grid cell. Both withholding strategies showed higher
uncertainty near the monitors, especially in urban areas where the
monitors were densely distributed. However, the relative magnitude of
the standard deviation in each grid cell was much lower than the
averaged concentration (Fig. 3), indicating the data fusion model was
robust. The site-wise data withholding still showed a higher standard
deviation than random data withholding. The eastern and western
coasts of the U.S. showed higher standard deviations as monitors were
more concentrated in these locations. Withholding the observations
from these monitors led to high uncertainties in the data fusion outputs
near these locations.

3.4. Data fusion for other chemical transport models

We applied GF-1 to 2017 GEOS-Chem and WRF-Chem simulations to
evaluate the generalizability of the method and our implementation,
and whether it is leading to similar performance trends as it did for
CMAQ (Tables S2-S5, Figs. S3-514).

The GEOS-Chem simulated daily average PM3 5, MDA8-O3 and daily
average NO; had a Pearson R of 0.37, 0.64, and 0.58, respectively. The
fused GEOS-Chem results improved with R values of 0.63, 0.89, and
0.68, respectively. The fused GEOS-Chem results also had a lower RMSE
than the GEOS-Chem results. The RMSE for fused GEOS-Chem PMj s,
MDA8-O3, and NO, were 7.07 pg/mS, 6.05 ppb, and 5.77 ppb, which
were lower than the GEOS-Chem RMSE of 10.63 pg/m?, 10.75 ppb, and

7.81 ppb. The fused GEOS-Chem under either withholding strategy also
showed better performance than the GEOS-Chem simulated fields
compared with observations (Table S3). Results indicated that the data
fusion method effectively improved the GEOS-Chem model’s perfor-
mance for both methods. Analyses of fused GEOS-Chem performance
and uncertainties, similar to those conducted for CMAQ, are available in
the Supplementary Information (Tables S2-S3, Figs. S3-S8).

A similar analysis was conducted using WRF-Chem (Tables S4-S5,
Figs. S9-514). The WRF-Chem simulated daily average PMy 5, MDA8-O3,
and daily average NO, had Pearson R values of 0.21, 0.63, and 0.62, and
RMSE of 16.07 pg/m>, 10.77 ppb, and 8.15 ppb, respectively. The fused-
WRF-Chem had much higher Pearson R (0.56, 0.91, 0.70 for daily
average PMy 5, MDA8-O3, and daily average NO,, respectively) and
lower RMSE (7.48 pg/m°, 5.30 ppb, and 5.45 ppb for daily average
PM, 5, MDA8-O3, and daily average NO,, respectively), indicating a
better performance. We also applied the two withholding strategies to
demonstrate the robustness of the GF-1 and evaluate the uncertainties of
the model (Figs. S12-S13) and found that fused-WRF-Chem under
different data withholding strategies still has better performance than
WRF-Chem.

3.5. Comparison of different CTMs and Fused-CTMs

By using the nearest-grid matching method, we compared the
matched grid cell’s simulations between GEOS-Chem and CMAQ and
between WRF-Chem and CMAQ (Fig. 7), both with and without data
fusion. For the simulations without data fusion, CMAQ had a correlation
R? of 0.09, 0.62, and 0.43 with GEOS-Chem for daily average PMj s,
MDAS-O3, and daily average NO, simulations, respectively. The daily
average PM, s and MDA8-O3 simulation correlation between CMAQ and
WRF-Chem was relatively low (R2 values are 0.01 and 0.38, respec-
tively), while the daily average NO, had a higher correlation (R?> =
0.49). For both comparisons, the daily average PMy s had the lowest
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Fig. 6. The standard deviation of averaged data fused-CMAQ results under random data withholding and site-wise data withholding strategies. For each grid cell
shown in the figures, the value is the standard deviation of 5 withheld data fusion results generated by a 5-fold cross-validation process using the data fusion model.

correlations among the three pollutant species. The PMj 5 predictions
showed significant differences across different simulations, particularly
at high concentration levels. This is likely due to large uncertainties in
different fire emission inventories and plume rise models used in these
chemical transport models. Correlations between fused-CMAQ and
fused-GEOS-Chem and between fused-CMAQ and fused-WRF-Chem
improved. The R? between fused-GEOS-Chem and fused-CMAQ were
0.38, 0.86, and 0.59 for daily average PMys, MDAS8-O3 and daily
average NOy. The R? values between fused-CMAQ and fused-WRF-Chem
were 0.36 for daily average PM> 5, 0.86 for MDAS8-O3 and 0.66 for daily
average NOy. As data fusion adjusted CTM outputs closer to observa-
tions, the disparities were reduced between the fused CTMs.

The nearest-grid matching method is commonly used when projec-
ting simulation results onto a finer-resolution grid, where each finer grid
cell is assigned the concentration value of the nearest coarser grid cell.
An alternative comparison approach is to regrid the simulation from
different models onto the same grid defined by the coarsest resolution,
and such a method is more consistent with the physical meaning of
concentrations in chemical transport models, where each grid cell’s
concentration value represents the spatially averaged concentration
over the grid volume. To understand how these two different compari-
son methods affect comparison results, we regridded the outputs from
WRF-Chem, CMAQ, fused WRF-Chem, and fused CMAQ onto the GEOS-
Chem grid, which has the coarsest spatial resolution among these
models. Specifically, for each GEOS-Chem grid cell, we identified all
overlapping grid cells from the other models and averaged their values
to obtain the regridded value for that cell (Fig. S15). Overall, the com-
parison results using the regridding method were generally similar to

those obtained from the nearest-grid matching method, as the simula-
tion outputs with data fusion show a higher R? than those without data
fusion. Comparing these two comparison approaches, the regridded
approach yielded slightly higher R? values across the model simulations,
particularly for NO, and PMjy s, likely because the averaging process
smoothed out the influence of extreme concentration events.

4. Discussion

In this study, we implemented a generalized data fusion method for
CTMs, the Gen-Friberg method, and applied it to CMAQ, GEOS-Chem,
and WRF-Chem models. The fused versions of CMAQ, GEOS-Chem,
and WRF-Chem showed improved performance compared to the orig-
inal simulations, demonstrating the effectiveness of data fusion in
reducing biases in chemical transport model outputs. To assess the un-
certainty of the data fusion model, we performed 5-fold cross-validation
using both random and site-wise data withholding strategies. For the
CMAQ model, site-wise data withholding resulted in poorer perfor-
mance than random withholding, particularly for PM; s, suggesting that
fused PMy5 was more sensitive to spatial coverage than temporal
coverage of the observation data. For GEOS-Chem and WRF-Chem, the
cross-validation results for NO5 and Oz were similar under both with-
holding strategies, while performance under site-wise data withholding
is also poorer than random withholding for PMy 5 (Tables S3 and S5).
Overall, cross-validation performance for all CTMs in the study was
lower than the data fusion with all observations, as each fold was
evaluated using observational data not included in that fold’s data
fusion. However, the cross-validation performance still exceeded the
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original simulations, indicating that the data fusion model was not
overfitting and remained robust in predicting spatial and temporal
patterns where observations were missing.

4.1. Applicability to assessing source impacts and source apportionment

The data fusion method implemented in this study can be used to
assess the impacts of specific sources and for source apportionment (SA)
of pollutants, although its use is somewhat limited.

Normally, for source impact studies, the concentration impacts
(Aconc) can be calculated from differences of simulations with and
without specific sources or estimated from methods such as the direct
decoupled method (DDM) (Napelenok et al., 2006), the integrated
source apportionment method (ISAM) (Shu et al., 2023; Cohan and
Napelenok, 2011), O3 (Dunker et al., 2002) or particulate matter
(Yarwood et al., 2007) source apportionment methods (PSAT or OSAT).
An “observation-adjusted impact” can be estimated by the following
formula (Equation (15)), which was conducted by Huang et al. (2019)
for fire-related pollutants:

CONCfysed

Aconcagjuse = o x Aconc (15)

Nnccrm

However, the assumption made by this formula to calculate
observation-adjusted impact for specific sources is highly simplified.
From the mathematical derivation, the formula implies that the ratio of
fused CTM to CTM equals the ratio of fused CTM to CTM without the
specific source (Text S4). In reality, the nonlinearity of chemical re-
actions and the data fusion process can easily break the assumption that
the ratio is the same under these two scenarios (with and without the
source).

For source apportionment, the results from data fusion can serve as
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inputs for source apportionment models, such as chemical mass balance
(CMB) (Miller et al.,, 1972) or positive matrix factorization (PMF)
(Bhandari et al., 2022). Using fused-CTMs as inputs to CMB or PMF
provides the spatial distribution of source contributions, unlike using
only observations with source apportionment models, and offers greater
computational efficiency compared to the integrated source apportion-
ment method (ISAM) (Shu et al., 2023; Cohan and Napelenok, 2011) or
DDM. For instance, Huang et al. used fused-CMAQ as the CMB input and
demonstrated the effectiveness of such ensemble models in predicting
the spatial distribution of PM; 5 source contributions in North Carolina
(Huang et al., 2022).

4.2. Development of an ensemble data fusion modeling framework

The data fusion model implemented in this study can be applied
within an ensemble modeling framework using a boosting (Schapire,
1990; Freund and Schapire, 1997) or bagging method (Breiman, 1996)
to further reduce the bias between simulations and observations.
Boosting is an ensemble technique to combine different models
sequentially. Instead of fusing the simulation with observations in one
step, a boosting model combines the predictions of several weak data
fusion models to create a strong data fusion model that can additionally
reduce the simulation bias. At each step, the following model in the
boosting framework used the previous model outputs in the boosting
framework as one of the sources of inputs to predict the target concen-
tration (observation). For instance, Senthilkumar et al. (2022) designed
a boosting data fusion model by combining a traditional data fusion
model with a random forest model to additionally reduce the bias.
Bagging (including Bootstrapping and Aggregating steps) is another
ensemble method for combining different models or data sources in a
parallel way. In the bootstrapping step, several weak models, which will
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be used in the ensemble modeling framework, are trained. Instead of
using the whole dataset to train models, each model is trained on a
subset of data. Then, the predictions from individual models are com-
bined by the aggregating step to produce a final prediction. For example,
when CTM, satellite retrieval, and ground measurements are available,
GF-1 can be applied to fuse CTM and observations as part of the
ensemble framework. Other data fusion methods, such as those pro-
posed in some previous studies (Xiao et al., 2018; Chan et al., 2021),
could be included to fuse ground measurements with satellite retrievals.
Then, we can easily average these two data fusion models’ results to
generate the final data fusion field. The resulting averaged concentra-
tion field integrates data from CTM, satellite retrievals, and ground
measurements, potentially offering more realistic and robust spatio-
temporal patterns of pollutant distribution. The user-friendly imple-
mentation in this study offers greater flexibility and convenience for
researchers to incorporate a variety of data and data fusion methods to
develop an ensemble data fusion modeling framework, which can be
used to achieve the desired performance.

4.3. Limitations

While the generalized data fusion method implemented here effec-
tively reduces biases in concentration fields obtained from CTM simu-
lations, certain limitations may impact how well the procedure captures
the real spatiotemporal variations in the concentrations. First, this
method is primarily designed for fusing CTM outputs with observations
at a daily temporal resolution, as it was originally developed to support
air quality exposure assessments used in epidemiological studies, such as
estimating mortality, morbidity, or disease-specific relative risks asso-
ciated with air pollution. Since healthcare claims data for emergency
department visits or other hospital records generally are reported daily,
the corresponding air pollution concentration fields are also desired at a
daily temporal resolution. Accordingly, we used 365.25 days as the
period of the trigonometric sinusoidal function in Equation (7) to cap-
ture seasonal variations in air pollutants. For applications requiring
hourly resolution, one possible solution is to incorporate diurnal varia-
tions in Equation (7), for example, by using a variable amplitude with a
24-h period instead of a fixed amplitude. Moreover, although bias is
reduced by correcting concentration intensity spatiotemporally and
fusing interpolated observations using Kriging interpolation and
regression models, poor performance by the underlying CTM is only
partially corrected. For instance, meteorological models, which provide
input for chemical transport models, often have biases in wind simula-
tions. Inaccurate wind speed and direction can affect pollutant trans-
port, leading to biased concentration fields, especially for extreme
pollution events such as fires. Incorrect wind direction can cause smoke
to impact a monitor that would not be affected under actual meteoro-
logical conditions or vice versa, such that the interpolated field will
suffer very large biases. Wind speed also affects smoke concentrations
through dilution and influences the timing of smoke arrival via advec-
tion. To address concentration bias due to biased wind simulations, both
observed and simulated wind data should be incorporated into the data
fusion method. Another challenge for our data fusion method is reducing
biases in counterfactual scenario simulations. The data fusion model
requires both chemical transport model simulations and corresponding
observations, so it cannot be applied to counterfactual scenarios where
observations are missing. However, counterfactual simulations are
critical for health impact assessment or future policy-making. To address
this, machine learning or deep learning models that are trained with
emission inputs, CTM simulations, and observations could be effective in
capturing concentration responses to variations in emissions (Xing et al.,
2020; Huang et al., 2021). Additionally, the difference between CTM
predictions and observations does not necessarily indicate that the
predictions are inaccurate, as CTMs provide average concentrations
within a grid cell. However, the data fusion process forces the pre-
dictions at monitoring sites to closely align with observed values, which
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can also influence predicted concentrations in nearby areas. The impact
of this alignment is more significant when fusing data into
coarse-resolution models.

GF-1 can be applied to various CTMs to correct their biases. We
observed that the data fused concentration fields of CTMs exhibited
stronger correlations with each other compared to the CTM concentra-
tion fields. This is because all fused concentration fields were adjusted
toward observations. The higher correlation between different fused-
CTM concentrations has the potential to reduce uncertainties when
they are applied in epidemiological studies, particularly when exam-
ining the correlations between pollutant exposure and health outcomes,
morbidity, or mortality. However, notable magnitude differences per-
sisted even after fusing the CTMs’ outputs with observations. Among the
studied species, daily PMy5 exhibited the largest disparities: fused-
CMAQ concentrations were 59 % lower than fused-GEOS-Chem and
46 % lower than fused-WRF-Chem, as indicated by the regression slopes
(Fig. 7). Model resolution differences and physics, fire emission in-
ventories, plume-rise schemes, and chemistry mechanisms used in those
CTMs could explain these disparities. This raises concerns for health
assessment studies that rely on fused concentration fields. Using
different CTMs or resolutions, even with identical observational data,
can yield varying estimates of mortality, morbidity, and associated
economic impacts. This finding underscores the critical need for
comprehensive uncertainty analyses in health studies. Such analyses
should not only evaluate the fused concentration fields compared with
observations but also account for discrepancies stemming from the
choice of CTMs. Some previous studies have often overlooked this
aspect, which could significantly influence uncertainty estimations.
Meanwhile, underlying CTM still plays an important role in affecting the
fused concentration intensity and spatiotemporal distributions.
Improving the representation of physical and chemical processes within
CTMs is essential for further reducing uncertainties in air quality-related
health assessments. Future research should focus on harmonizing CTM
outputs through advanced fusion techniques and systematically evalu-
ating the implications of model intercomparisons for health studies.
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