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ABSTRACT: Prescribed burning is an effective land management
tool that provides a range of benefits, including ecosystem
restoration and wildfire risk reduction. However, prescribed fires,
just like wildfires, introduce smoke that degrades air quality.
Furthermore, while prescribed fires help manage wildfire risk, they
do not eliminate the possibility of wildfires. It is therefore
important to also evaluate fire and smoke impacts from wildfires
that may occur after a prescribed burn. In this study, we developed
a framework for understanding the air quality and health related
trade-offs between wildfires and prescribed fires by simulating a set
of counterfactual scenarios including wildfires, prescribed fires, and
postprescribed burn wildfires. We applied this framework to the
case of the Gatlinburg wildfire and found that emissions from
prescribed burns and subsequent wildfire were slightly lower than those from the wildfire itself. This reduction resulted in lower daily
average concentrations and exposures of PM2.5, O3, and NO2. Even considering the possibility of a postprescribed burn wildfire,
prescribed fires reduced population-weighted daily average PM2.5, daily maximum 8-h average O3, and 1-h maximum NO2
concentrations. In Sevier County, Tennessee where the wildfire occurred, these reductions reached 5.28 μg/m3, 0.18 ppb, and 1.68
ppb, respectively. The prescribed fires also reduced the person-days smoke exposures from the wildfire. Our results suggest that
although prescribed fires cannot eliminate the air quality impacts of wildfires, they can greatly reduce smoke exposure in downwind
areas distant from the burn sites.
KEYWORDS: wildfires, prescribed fires, postprescribed burn wildfires, smoke, CMAQ, BlueSky

1. INTRODUCTION
Prescribed fires are planned, controlled fires that have multiple
benefits for the ecosystem health,1 hazard reduction,2 and
endangered wildlife protection.3 Also, prescribed burning is a
land management tool that can reduce the likelihood of
catastrophic wildfires.4,5 However, both prescribed fires and
wildfires emit significant amounts of pollutants such as
particulate matter with aerodynamic diameter less than 2.5
μm (PM2.5), volatile organic compounds (VOCs), and
nitrogen oxides (NOx) into the troposphere, and these
pollutants have adverse health impacts.6,7 Recognizing that
wildland fire management policies over the past century are
not sufficient8 for wildfire risk reduction, and a warming
climate is changing wildfire occurrence,9 it is increasingly
important to evaluate prescribed fire and wildfire synergies and
feedbacks in order to advise the prescribed fire management
policy and evaluate the air quality-related benefits or burdens
from prescribed burning decisions. Jaffe et al.10 compared the

spatial and temporal patterns and emissions intensities of
prescribed fires and wildfires in the U.S. The discrepancies in
timing and locations for prescribed fires and wildfires make it
challenging to compare the air quality impacts of prescribed
fires with those of wildfires. Williamson et al.11 conceptually
accounted for these differences by proposing a research
framework around “smoke regimes” similar to how fire
ecologists use fire regimes. While measurement12−14 and
simulation15−18 methods are being applied to this challenging
problem, the research community is still in search of suitable
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methods for reliable prescribed fire/wildfire air quality impact
comparisons, such as the one provided in this study.

To effectively compare the impacts through measurements,
it is essential to have a geographic area where both wildfires
and prescribed burns frequently occur. In the southeastern
U.S., high-intensity wildfires are rare, but in the western U.S.,
there are opportunities for conducting comparisons of wildfire
and prescribed fire impacts. For example, Schweizer et al.
analyzed the impacts of 14 fires, 7 high-intensity, and 5 low-
intensity wildfires and 2 prescribed fires, in the California
Sierra Nevada.19 Looking at increases in ground-level PM2.5
concentrations in population centers at distances of approx-
imately 50 to 100 km on days with satellite-observed smoke
aloft, they found that prescribed fires and low-intensity
wildfires result in a much lower exposure per unit area burned
than high-intensity wildfires. This study assumed that the fuel
and atmospheric conditions are the same for different fires and
the transport of smoke to populated areas is similar. Even if the
first two assumptions hold, the distance from the fire matters as
nearby fires would have a larger impact than more distant fires
of the same intensity. Similar opportunities for comparing the
impacts exist in other locations, for example, in Sydney,
Australia, where wildfires and prescribed fires coexist.20

Navarro et al. took a different approach by reviewing reports
of exposures to wildfire and prescribed fire smoke in the
literature,12 and identified nine studies reporting smoke
concentrations related to wildfires and seven related to
prescribed fires. The review pointed to several issues with
how smoke measurement methods are used in the analysis of
impacts. In general, instruments measuring prescribed fire
smoke are placed much closer to the fire than those reporting
wildfire smoke. Consequently, the smoke measurements found
in the literature for prescribed fires are relatively higher
compared to their wildfire counterparts. Without regard to the
proximity of the fires, this situation may lead to overestimation
of the prescribed fire smoke impacts. While it is important to
understand the local impacts of the prescribed fire smoke, it is
also crucial to have accurate measurement further downwind
to make informed decisions and distinguish air quality impacts
between communities near the burn site and those in
downwind areas. Huang et al., using low-cost sensors, have
shown that existing PM2.5 monitoring networks are not capable
of measuring the prescribed fire impacts in the southeastern
U.S.21 Similarly, Marlier et al. pointed to the inadequacy of
existing regional monitoring systems in identifying the
exposure of outdoor agricultural workers to wildfire smoke in
California.22 Gaps in ground observations can be partially
bridged with satellite data, though this method is not without
its limitations. First, not all fire plumes are visible to satellites,
especially those from small, low-intensity prescribed fires.23

Then, satellites detect vertical column densities, and ground-
level concentrations do not always correlate with the presence
of smoke aloft; the plumes of some high-intensity wildfires may
shoot up into the free troposphere and have little impact in the
boundary layer over downwind population centers in close
proximity.24 What is helpful is a combination of satellite data
with models�whether statistical,20 machine learning,25

trajectory,26 or chemistry transport models (ref 27)�that
can accurately relate to ground-level concentrations.

To understand the trade-offs of prescribed fires, fire emission
models and air quality models are efficient tools since the
trade-off scenarios typically include factual or counterfactual
(or hypothetical) prescribed burns, postprescribed burn

wildfires, or wildfires in unmanaged lands. One method is to
compare the wildfire and counterfactual prescribed burns and
assume the postprescribed burn wildfire does not happen. Kelp
et al. conducted an adjoint chemistry transport model to
simulate the prescribed fire and wildfire emission influence
under different meteorological conditions.16 The prescribed
burns were treated as replacements for wildfires. However, the
timing of the prescribed burns was not well-designed, and the
fire emission estimations were highly simplified (50% reduced
emissions for prescribed burns in all landscapes). Kiely et al.28

employed a fuel load and fuel consumption estimation
framework to improve the estimations of wildfire and
prescribed fire emissions. The study indicated that the
prescribed fires reduced the mortality due to PM2.5 exposure
compared to wildfires. Wildfire ignitions may inevitably occur
on landscapes treated with prescribed fire. However, prescribed
fires may limit the area burned and reduce the fire severity of
future wildfires, resulting in less fuel consumption, and hence
emissions, than what would have occurred in the absence of
the prescribed fire treatment. This potential reduction in future
wildfire emissions, sometimes referred to as avoided wildfire
emissions,4 must be estimated to quantify possible long-term
net benefits to air quality. Jones et al. suggested evaluating the
potential benefits of prescribed fires by considering the health
impacts from high-intensity wildfires, prescribed burns, and
low-intensity postprescribed burn wildfires.29 A recent example
of simulation based comparative assessment by U.S. Environ-
mental Protection Agency (EPA) focused on two wildfires in
the western U.S., the Timber Crater 6 Fire that burned 3000
acres in Crater Lake National Park in 2018 and the Rough Fire
that burned 150,000 acres in Sierra Nevada National Forest in
2015. Both fires’ scars included lands previously treated by
prescribed fire. Hypothetical prescribed burn scenarios with
more or less treatment and following postprescribed burn
wildfire scenarios were simulated using a fire emissions
estimation framework and a chemistry transport model. The
results suggest that no prescribed burning would lead to the
largest amount of PM2.5 exposures and increasing prescribed
burning would reduce the PM2.5 exposures.15 Schollaert et al.
designed prescribed fire management scenarios with different
management extents.30 The study simulated several decades of
prescribed fire decisions and considered the evolution of fuels
by applying a landscape change model.31 The fire emissions
estimated by a fuel type and combustion model were used in
an inert tracer dispersion model. The study indicated that a
scenario with moderate intensity of prescribed fire manage-
ment had optimized health benefits. Afrin et al.7 evaluated the
benefits of counterfactual prescribed burns for the prevention
of two wildfires in North Carolina and considered postpre-
scribed burn wildfire occurrence. The study revealed that the
prescribed fires mitigated the PM2.5 exposures in the region.
The emission calculations in this study used the size and
centroid of the fires instead of the actual boundaries of fires,
which is an oversimplification of the fuel load and emission
estimations. Additionally, the counterfactual prescribed burns
were conducted with equal size for each burn date, without
accounting for the presence of firebreaks. The design of the
prescribed fire perimeter can affect the magnitude and
temporal patterns in emissions.

Ideally, the method used for assessment of air quality trade-
offs must be free from any biases that may favor or discourage
prescribed burning. However, in practice it is not easy to come
up with such a method. Here, we focused on the Gatlinburg

ACS ES&T Air pubs.acs.org/estair Article

https://doi.org/10.1021/acsestair.4c00233
ACS EST Air XXXX, XXX, XXX−XXX

B

pubs.acs.org/estair?ref=pdf
https://doi.org/10.1021/acsestair.4c00233?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


wildfire, which began in late November 2016. This wildfire was
ignited by human error within the Great Smoky Mountain
National Park near Gatlinburg, Tennessee prior to a big
windstorm. It grew dramatically, burning over 10,000 acres,
and impacted Gatlinburg and nearby communities. The fire
resulted in 14 fatalities, including two deaths directly or
indirectly due to the inhalation of smoke,32 loss of more than
2000 structures, and more than 2 billion dollars of damage.33

Our study implemented a new framework for designing
counterfactual prescribed fires with considerations of fire
behavior and meteorological conditions. Also, instead of
treating each fire as a point for estimation of emissions, as
done in some previous studies,7,28 we implemented an
algorithm for designing the perimeters of counterfactual
prescribed burns, which can also be applied in future trade-
offs studies. Then, we used the boundaries of the fire to
improve the fuel representation accuracy. The estimates for
wildfire, prescribed burns, and postprescribed burn wildfire
emissions were applied to simulate the air quality impacts with
a chemical transport model. The population-weighted
concentrations and the population impacted by fire smoke
under different fire scenarios were analyzed to evaluate the
trade-offs between wildfires and prescribed fires. The frame-
work implemented in this study can be applied to other
wildfire-prescribed fire trade-off case studies.

2. METHODS
In this study, we focused on the main part of the Gatlinburg
wildfire (WF) located in Sevier County, Tennessee, U.S
(Figure S1). The fire burned from Great Smoky Mountain
National Park and headed to the Gatlinburg area and Pigeon
Forge City. We designed three scenarios to evaluate the
emissions and air quality trade-offs between prescribed fires
and wildfires (Table 1). The counterfactual prescribed burns

(Rx) were designed with consideration of firebreaks and
meteorological conditions. We also assumed a postprescribed
burn wildfire (post-Rx WF) occurrence with reduced fuel load
after prescribed fire consumptions. We estimated emissions for
different scenarios with fires at the Gatlinburg wildfire region.
The smoke impacts were estimated by subtracting no-fire
baseline simulations from the simulations with fires. The
differences between smoke impacts from Scenario 2 and
Scenario 3 were used to assess the benefits or losses of the
prescribed fires considering the postprescribed burn wildfire
occurrence.
2.1. Design of Counterfactual Prescribed Fires.

2.1.1. Selection of Prescribed Fire Dates. Prescribed fires
are conducted under meteorological conditions favorable for
safe ignition and controllable fire propagation that also

minimize local smoke impacts. Fire managers typically use
weather forecasts to decide whether to conduct prescribed fires
or not. In this study, we used the following rules from
prescribed burning management guidelines for date selection:
24-h rain <6.35 mm/day (0.25 in./day), relative humidity
>30%, temperature <29.4 °C (85 °F), planetary boundary layer
between 503 and 1981 m (1650 to 6500 feet), wind speed
between 3.6 and 6.3 m/s (8 to 14 mph), and transport wind
speed between 4.0 and 8.9 m/s (9 to 20 mph).34 We obtained
the meteorological conditions from our Weather Research and
Forecasting Model (WRF, version 3.9)35 simulation for a grid
cell near Gatlinburg (Figure S1).

2.1.2. Determination of Prescribed Fire Boundaries.
Firebreaks are natural or manmade obstacles that keep the
prescribed fires from escaping out of the designated burn units.
The boundaries of the burn units are designed to allow the
prescribed fires to be conducted safely and reduce the cost of
building firebreaks.36 In this study, we first used the 30-m
resolution National Land Cover Database (NLCD) 201637 to
find existing firebreaks such as barren land, open water, or
developed urban regions (roads or railways)36,38 (Figure S2).
The risk management practices suggest limiting the burned
area to less than 1000 acres per day.39 However, some
prescribed fire units with boundaries designed from existing
firebreaks had areas larger than 1000 acres. We further split
those large units by considering fire behavior over sloped
terrain. Fire propagates faster when the slope is steeper due to
the preheating effects.40 We utilized terrain slope data from 30-
m resolution Landscape Fire and Resource Management
Planning Tools (LANDFIRE)41 products and set boundaries
where the slope is gentler (<20 degrees) to allow more control
over the spreading rate of prescribed fires (Figure S3). For
extracting the boundary line that follows the target type of grid
cells (grid cells with desired land cover type for NLCD data
and with gentle slope values for LANDFIRE data) in the raster
data sets, which are composed of grid-based data that includes
geographic attributes, we implemented an algorithm combin-
ing the dilation operation42 and uniform-cost search.43 The
dilation operation simplified the boundary of grid cells with
target values, and the uniform-cost search found a path that
follows the target grid cells between a start point and an end
point (algorithm S1).
2.2. Wildfire and Prescribed Fire Emissions. We used

the BlueSky framework (version 4.3)44 to estimate emissions
of the Gatlinburg wildfire, counterfactual prescribed burns, and
postprescribed burn Gatlinburg wildfire. BlueSky incorporates
modules to estimate fuel type, fuel load (FCCS module45), fuel
moisture (NFDRS module46), and fuel consumption (CON-
SUME module47), sequentially (Table S1). Then, it combines
this information with Prichard-O’Neill emission factors to
derive the fire emissions.48 The smoke plume will reach
different heights and have different vertical structures depend-
ing on the type of fire due to the differences in heat fluxes
emitted from wildfires and prescribed fires.49,50 We utilized the
Briggs plume height model, which uses the estimated heat
from the consumption model to estimate the plume vertical
structures.51 Fuels are spatially heterogeneous. The BlueSky
utilized a 1-km resolution FCCS fuel map to estimate the fuel
type and fuel load. For improved estimations of fuel type and
fuel load for fires in our study, we used the fire boundaries in
the BlueSky framework instead of assigning the values at the
centroids of burned areas. To consider the differences in fuel
load, consumption, and emissions among prescribed burns, the

Table 1. Simulation Scenarios

Scenarios Scenario descriptions

Scenario 1
(baseline)

No counterfactual prescribed burns (no Rx)
No Gatlinburg wildfire (no WF)

Scenario 2
(factual
wildfire)

No Rx
WF (wildfire case)

Scenario 3 Rx: 19 prescribed burns under favorable meteorological
conditions before WF (prescribed fire case)

Postprescribed burn wildfire (Post-Rx WF) with reduced
fuel loads during WF period (postprescribed burn wildfire
case)
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wildfire, and the postprescribed burn wildfire, we conducted
different configurations in different scenarios. We ran BlueSky
with wildfire mode for the wildfire and the postprescribed burn
wildfire, which consumed canopy fuels and applied wildfire
emission factors. The postprescribed burn wildfire had the
same fire boundary and burned date as the Gatlinburg wildfire,
while the postprescribed burn wildfire fuel load was reduced
based on fuel consumption from counterfactual prescribed
burns. However, we assumed no regrowth of understory
vegetation after the prescribed fire treatment for the
postprescribed burn wildfire case. For the prescribed fire
case, the emissions were estimated in BlueSky’s prescribed fire
mode without canopy consumption since prescribed fires
typically consume the understory. The detailed BlueSky
settings can be found in Supporting Information (Table S1).
2.3. Air Quality Simulations. We used the Community

Multiscale Air Quality (CMAQ, version 5.4) modeling
system,52 an Eulerian chemical transport model (CTM), to
simulate the air pollution concentration under different
scenarios. The meteorological conditions for the model were
provided by the WRF, version 3.9.35 The CMAQ model was
under 12-km resolution, and the domain covered the
contiguous United States (CONUS) (Figure 1). We used
the Carbon Bond 6 (CB6) gas phase chemistry mechanism
and the AERO6 aerosol module in CMAQ to represent the
evolution of primary pollutants and the formation of secondary

pollutants. The National Emission Inventory (NEI)53 was
applied for all anthropogenic and wildland fire emissions,
excluding the Gatlinburg wildfire. The biogenic emissions were
calculated online by the Biogenic Emission Inventory System,
version 4 (BEIS4)54 included in CMAQ. For the baseline
scenario, we included all anthropogenic, wildland fire, and
biogenic emissions except the fire emissions related to the
Gatlinburg wildfire. For the other two scenarios, the
corresponding fire emissions from BlueSky were input as
grid-based emissions with 3D structures considering the Briggs
model estimated plume height and plume bottom with
uniform vertical profile assumption along with all other
emissions.

We conducted continuous CMAQ simulations, beginning 2
days prior to each fire case for model spin-up and extending 5
days after the final burn date to capture postburn smoke
transport. Since smoke transport within the study domain
typically lasts less than 2 days, our analysis focused on
concentrations and exposures for the burn dates and the
subsequent 2 days. Table S6 provides the specific CMAQ
simulation and analysis periods used in this study. The daily
average PM2.5, daily maximum 8-h (MDA8) O3, and 1-h daily
maximum NO2, which have standards in National Ambient Air
Quality Standards (NAAQS), were the pollutants discussed in
this study. The performance of CMAQ model in simulating
these pollutants under the factual scenario (Scenario 2) was
evaluated by comparing the modeled concentrations with EPA
monitoring data55 using statistical metrics whose formulas are
given in Text S1, such as normalized mean bias (NMB),
normalized mean error (NME), and Pearson correlation
coefficient (also known as R).
2.4. Population-Level Exposure Ascertainment. We

simulated three scenarios using CMAQ v5.452 with different
fire emissions. The impacts of fires in Scenarios 2 and 3 were
estimated by subtracting the concentration of the baseline (i.e.,
no-fire) scenario (Scenario 1). To understand the health
impacts of prescribed fires, postprescribed burn wildfires, and
wildfires, we first created a population-weighted measure of
pollutant concentration, which is defined as

=
×

osure
c pop

pop
exp t

i j i j t i j

i j i j

, , , ,

, ,

where ci,j,t and popi,j are respectively the fire-associated daily
pollutant concentration on day t and population for each
ground-level grid cell (i,j) in CMAQ simulations. For
population data, we used 1-km resolution population data for
the United States56 and regridded it onto CMAQ grids by
using the nearest neighbor approach (Figure S11).

In our study, we used the concept of person-days (PD) to
quantify the population exposed to smoke under different fire
events.57 Person-days refers to the cumulative time that
individuals in a population are exposed to a certain pollutant
concentration level, offering a useful metric for evaluating
trade-offs between prescribed fires and wildfires. This metric
accounts for both pollutant concentrations and exposure
duration, effectively capturing the differences in exposure time
between prescribed fires and wildfires. Person-days can be
mathematically defined as

= ×PD pop H c threshold( )
t i j

i j i j t
,

, , ,

Figure 1. (a) CMAQ 12-km resolution domain. The blue box is the
CMAQ simulation domain with 246 rows and 396 columns. The red
boundaries show the states focused in the study. The blue star shows
the Gatlinburg wildfire location. (b) Boundaries of counterfactual
prescribed burns. Each prescribed burn’s boundary is filled with a
different color. The number in each boundary indicates the burn
number assigned for each prescribed burn. The burn date and the
burned area associated with each burn number are shown in Table S4.
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<
l
moo
noo

H x
x

x
( )

1, 0

0, 0

where ci,j,t and popi,j maintain the same definition as before.
H(x) is a unit step function58 and it is used to count the
population in grid cell (i,j) when the associated concentration
exceeds the selected threshold for each day. We first
accumulated the counted population among all the ground-
level grid cells over the study domain to evaluate the daily
person-days under different pollutant levels. Then, we summed
up the daily person-days over the scenario’s time period to
calculate each scenario’s person-days. The benefit from
prescribed fire is the person-days difference between wildfire
(Scenario 2) and the sum of prescribed burns and the
postprescribed burn wildfire (Scenario 3).

= +PD PD PD PD( )Rxbenefit WF Rx post RxWF

where PDWF, PDRx, PDpost‑Rx WF are the total person-days from
wildfire, prescribed burns, and postprescribed burn wildfire
cases. PDRx benef it denotes the benefits from prescribed burns
and the positive PDRx benef it mean the prescribed fires prevented
exposures.

3. RESULTS
3.1. Designed Prescribed Fires. Before the wildfire

occurrence, we selected 19 days under favorable prescribed fire
weather conditions to conduct the designed prescribed burns
(Figure 1). For each prescribed burn, the boundaries of the
burn area were created based on the existing firebreaks, such as
developed regions and barren land from NLCD or gentle
sloped regions from the LANDFIRE product, to ease control
of the fire. The algorithm we designed (Algorithm S1)
guarantees the boundaries of the prescribed fires align with the
desired firebreaks or topographical features (Figures S4 and
S5). All the burn areas were limited to be less than 1000 acres
except for one prescribed fire on January 14th, 2016, which
had a burn area of 1233 acres. Also, we designed a “zigzag”
burning sequence to execute the prescribed fires in an orderly
fashion, reducing the distance between the burns.
3.2. Wildfire, Prescribed Fires, and Postprescribed

Burn Wildfire Emissions. Fuel Characteristic Classification
System version 2 (FCCS) fuel map45,59 incorporated in the
BlueSky fuel model provided the fuel type and fuel load in the
Gatlinburg wildfire region (Figure S6). The fuel type data
indicated that 51.7% of vegetation was yellow poplar/sugar
maple/basswood forest, and the rest was chestnut/white
northern red oak forest. The fuel consumption estimates
from the CONSUME model are shown in Table 2. The
prescribed fires consumed a total of 179,779.2 tons of fuel, and
the wildfire consumed 356,483.3 tons. The main differences in
fuel consumption between prescribed fires and wildfires were
in canopy consumption, where prescribed fires, as low-intensity
and controlled fires, typically consumed the ground fuels such
as duff. Since the postprescribed burn wildfire happened after

the prescribed fire treatment, we subtracted the fuel consumed
in prescribed burns from the fuel load in the Gatlinburg
wildfire region with the prescribed fire fuel consumption before
the postprescribed burn wildfire BlueSky simulations. Also, we
reduced the canopy consumption from 50% to 20% in
postprescribed burn wildfire, considering the intensity of the
fire would be reduced due to lighter fuel loads. The total
consumption of postprescribed burn wildfire was 147,476.2
tons, corresponding to a 58.6% decrease compared to the
wildfire. The largest decrease in fuel consumption was from
canopy by 99,261.0 tons. Then, the emissions were estimated
based on the fuel consumption and corresponding emission
factors for wildfires or prescribed fires. The total emissions of
different fire cases are shown in Table S2, Figure 2, and the

emissions for each designed prescribed burn are shown in
Figure S7. The sum of NOx, PM2.5, and VOC emissions from
prescribed burns and the postprescribed burn wildfire are
10.2%, 5.9%, and 4.6% less than the wildfire emissions,
respectively. All fires emitted significant amounts of particulate
matter (PM) and VOCs but limited amounts of NOx. Then,
the fire emissions are distributed with empirical time profiles
incorporated in BlueSky to provide hourly emissions for CTM
(Figure S8, S9). For prescribed burns, we assumed the ignition
starts at 10:00 (after the sunrise) and ends before 17:00
(before the sunset) local time (Figure S8). For wildfire, we
simulate the fire emissions from Nov 25th, 2016 to Nov 29th
based on the start and end times of NEI point emission
records. BlueSky assumed the same diurnal profile (Figure S9)
and equally distributed the burned area to each day. We used
the Briggs plume height model to estimate the hourly vertical
plume structures based on the input meteorological conditions
and heat flux provided by the CONSUME model (Figure
S10). The maximum plume height of wildfire is 6338.3 m,

Table 2. Fuel Load and Consumptions (Unit: Metric Tons) under the Wildfire, Prescribed Burn, and Postprescribed Burn
Wildfire Cases for the Gatlinburg Wildfire Region

Canopy Ground fuel Litter-lichen-moss Nonwoody Shrub Woody fuels Total

Fuel load 425704.8 94784.2 75088.2 3229.0 74999.0 120832.9 794638.1
WF consumption 165219.9 14607.9 51946.0 3136.4 48547.4 73025.7 356483.3
Rx burn consumption 0.0 8116.2 51776.4 3137.3 47682.9 69066.4 179779.2
Post-Rx WF consumption 65959.0 13985.6 15859.5 89.6 18488.2 33094.3 147476.2

Figure 2. Total emissions of NOx, PM2.5, and VOC in metric tons
under the wildfire, prescribed burn, and postprescribed burn wildfire
cases for the Gatlinburg wildfire region.

ACS ES&T Air pubs.acs.org/estair Article

https://doi.org/10.1021/acsestair.4c00233
ACS EST Air XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestair.4c00233/suppl_file/ea4c00233_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsestair.4c00233?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestair.4c00233?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestair.4c00233?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestair.4c00233?fig=fig2&ref=pdf
pubs.acs.org/estair?ref=pdf
https://doi.org/10.1021/acsestair.4c00233?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


which is higher than the maximum postprescribed burn
wildfire plume height (4188.9 m) and much higher than the
maximum prescribed fire plume height (3294.7 m). This can
be explained by the higher heat flux released from the wildfire.
Meanwhile, the average prescribed fire plume height (2099.0
m) is higher than the average wildfire (1854.1 m) and
postprescribed burn wildfire plume height (1250.6 m). This is
due to the differences in temporal patterns of prescribed fires

and wildfires. Prescribed fires typically start after sunrise and
are completed before sunset, while the wildfires can last during
the night and early morning. The lower planetary boundary
layer (PBL) and moist fuel conditions at night reduce the fire
plume heights and lead to lower average plume heights in the
wildfire case.
3.3. Modeled Pollutant Concentrations. Figure 3 shows

the CMAQ model performance in the evaluation periods

Figure 3. Model evaluation by comparing simulations to observations for daily average PM2.5, MDA8-O3, and 1-h max NO2 (the wildfire and
counterfactual prescribed fire burn dates and the following 2 days). The spatial plots on the left show the Pearson correlation coefficient (R) value
between simulation and observation for each monitor in the study domain. The density scatterplots on the right show the relationship between all
observations and simulations. The black dashed line is the unity (1:1) slope line. The red line shows the linear relationship between simulation and
observations. The R2 performance and 95% confidential interval of slopes and intercepts of the regression line are indicated. N shows the total
number of data points in the linear regression.
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which include the no-fire scenario covering the date of
designed prescribed burns and the subsequent 2 days (totaling
45 days), and the Gatlinburg wildfire scenario which burn
period spans from November 25, 2016 to November 29, 2016
plus the following 2 days (totaling 7 days). For the daily
average PM2.5, the NMB was −1.85%, the NME was 36.78%,
and the R was 0.65. The 1-h daily maximum NO2 evaluation
showed a −21.24% NMB, 38.70% NME, and an R value of
0.63. For the daily maximum 8-h ozone, the NMB was
−5.69%, NME was 14.33%, and R was 0.81. The formulas,
performance for all statistical metrics used in model evaluation,
and detailed performance evaluation results for the 45-day
period which covers the designed counterfactual prescribed
burns and the following 2 days and the 7-day period which
covered the Gatlinburg wildfire are available in Supporting
Information (Text S1, Table S3, Table S6, S7, Figure S19,
S20). The model performance was better than the recommend
benchmark criteria suggested by Emery et al.60 Overall, the
model underestimated NO2 and PM2.5 while it overestimated
the ozone based on slopes of the regression lines (Figure 3).
This is due to comparing well-mixed averaged grid cell values
with point measurements. The concentrations of primary

PM2.5 and NO2 can be greatly diluted. At the same time, the
diluted NOx, which leads to less titration, can enhance the
simulated ozone formation.61

Simulations show that the wildland fire emissions highly
impacted the air quality during the fire periods. The spatial
distributions of the mean concentration of PM2.5, MDA8-O3,
and 1-h max NO2 during the fire dates are shown in Figure 4.
The figure illustrates how different the smoke dispersion
patterns were between the wildfire and prescribed fire cases.
The Rx Impact has greater dispersion over the Atlantic Ocean,
while the WF Impact had more north/south dispersion. It
should be noted also that the scale of the Rx Impact panels is
an order of magnitude less than the WF Impact panels. Finally,
differences in dispersion patterns between the PM2.5 and O3
panels illustrate the complexity of atmospheric chemistry
processes. Secondary processes are forming ozone and
forming/reducing PM2.5 as the plume travels and interacts
with anthropogenic and biogenic species. For the Gatlinburg
wildfire, Tennessee was the state with the highest impact. The
state-averaged increases in PM2.5, MDA8-O3, and 1-h max NO2
were 0.64 μg/m3, 0.14 ppb, and 0.11 ppb, respectively. Sevier
County in Tennessee, where the wildfire occurred had the

Figure 4. Mean daily average PM2.5, MDA8-O3, and 1-h max NO2 of smoke impacts during the wildfire, postprescribed burn wildfire, and
prescribed burns periods. The smoke impacts are calculated by subtracting the baseline scenario concentrations from fire cases. The impact scale of
prescribed burns is an order of magnitude lower than that of the other cases. Figure S21 shows the impacts on the same symmetrical log scale for all
three types of fires.
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highest impacts from PM2.5 and NO2 due to the wildfire
emissions where PM2.5, 1-h max NO2 increases were 26.10 μg/
m3 and 6.49 ppb, respectively. However, Swain County in
North Carolina had the highest increase in MDA8-O3 by 0.98
ppb since ozone formation is not necessarily local to the fire,
depends on the presence of precursors in the area, and takes
time. The NOx-limited smoke formed ozone when the smoke
was transported to regions with high NOx concentrations, such
as urban areas. The impacts from postprescribed burn wildfire
had a similar spatial distribution as the Gatlinburg wildfire case
since these fire simulations were conducted during the same
period with the same meteorological conditions, but with
much lower smoke impacts. Again, Tennessee had the highest
impact, with 0.46 μg/m3, 0.11 ppb, and 0.08 ppb increases in
PM2.5, MDA8-O3, and 1-h max NO2, respectively. Sevier
County’s PM2.5 and 1-h max NO2 increased by 18.56 μg/m3

and 5.41 ppb, respectively. Swain County had a 0.84 ppb
increase in MDA8-O3. The counterfactual prescribed burns
had the lowest impacts among all cases due to their lower
emissions. Tennessee was still the state with the highest
impacts of daily average PM2.5 and 1-h max NO2, which
increased by 0.06 μg/m3 and 0.002 ppb, respectively, while
North Carolina had the highest MDA8-O3 increase by 0.02
ppb. For the county averaged concentration, Sevier County
still suffered from high PM2.5 and NO2 increasing due to the
distance to the source, with 2.34 μg/m3 and 0.14 ppb
increases, respectively. Jackson County in North Carolina had
the highest MDA8-O3 impact with a 0.24 ppb increase.
3.4. Population-Weighted Concentrations and Per-

son-Days. We estimated the averaged population-weighted
concentration and person-days by considering the burn dates
and the following 2 days (7 days included for WF and Post-Rx
WF cases and 45 days included for the Rx case) since this
period covers the smoke trajectories in the study domain. The
mean population-weighted concentrations of wildland fire
emissions under different fire cases were low over the whole
study domain (PM2.5 < 0.07 μg/m3; MDA8-O3 < 0.04 ppb; 1-h
max NO2 < 0.01 ppb). However, localized smoke exposures
still raised concerns regarding smoke impacts (Figure S12).
Tennessee, where the wildfire was located, had the highest
population-weighted concentrations. The wildfire increased the
state mean population-weighted exposure to PM2.5 by 0.49 μg/
m3, MDA8-O3 by 0.13 ppb, and 1-h max NO2 by 0.07 ppb. For
the prescribed burns case, Tennessee had the highest PM2.5
and NO2 exposures. The averaged population-weighted
concentrations during considered periods were 88.70% and
96.42% less compared to the wildfire case. South Carolina had
the highest MDA8-O3 exposures due to the prescribed burns,
which was as much as 0.02 ppb. Ozone mostly impacted
population in Greenville, a city near the border of North
Carolina and South Carolina. To understand the prescribed
fire-prevented population-weighted concentration, we calculate
the differences between the wildfire scenario (Scenario 2) and
the sum of the prescribed burns and postprescribed burn
wildfire cases (Scenario 3) (Figure S13). The average
population-weighted concentrations were much lower under
Scenario 3 than Scenario 2, which were 48.97%, 46.15%, and
42.86% less. The effect of the prescribed fires was to reduce net
population-weighted concentration relative to the actual
wildfire event, except in areas immediately downwind during
the prescribed fire events (along a strip extending from
Tennessee to South Carolina) but upwind during the wildfire
(Figure S13).

Since PM2.5 was the most impacted pollutant in the previous
analysis, we calculated the person-days for burn impact PM2.5
concentration between 1 μg/m3 and 15 μg/m3 to capture the
different extent of exposures (Figure 5), as most of the

population in the study area is impacted within this range. For
the select ranges, the prescribed burn and postprescribed burn
wildfire person-days were lower than wildfire. The prescribed
fire has net benefits when the benefits line (red line in Figure
5) is above zero. In this study of the Gatlinburg wildfire,
prescribed fire effectively prevented the PM2.5 exposures under
person-days criteria for most of the burn impact concentration
thresholds except at a PM2.5 impact level near 2 μg/m3 (Figure
5).

For low levels of PM2.5 (PM2.5 ≤ 1 μg/m3) impact,
prescribed fires have positive benefits of preventing population
exposures. The wildfire smoke, which had higher energy and
higher plume height, was transported by stronger winds during
the daytime, and induced a larger range for smoke impact
(Figure 6, top). For the prescribed fire with lower emissions
and lower plume height in the daytime, the smoke impact was
concentrated near the fire region. The long-range transported
smoke in the wildfire case easily reached the selected low-level
thresholds (1 μg/m3), which led the populations in Tennessee
and its nearby states, including Alabama, Georgia, South
Carolina, North Carolina, Virginia, and Kentucky, to be
exposed. The prescribed burns with smaller spatial air quality
impacts reduced the overall smoke exposure resulting from
both wildfire and postprescribed burn wildfire. Prescribed
burning led to a disbenefit at or above 2 μg/m3. This can be
explained by the long-distance transport of wildfire smoke,
which affected the nearby states, being mostly lower than 2 μg/
m3, and exposure near Gatlinburg was the dominant concern.
Prescribed burns that covered a longer period than the wildfire
induced higher person-days around Gatlinburg (Figure 6,
middle). Regional analysis of different levels of person-day

Figure 5. Person-days under Gatlinburg wildfire (WF) and prescribed
fire (Rx), and postprescribed burn wildfire (Post-Rx WF) cases of
Scenario 3 for specific burn impact concentration thresholds,
represented by red, blue, and orange lines, respectively. The green
line shows the sum of person-days for scenario 3. The black line
shows the person-days prevented by prescribed fires Rx, calculated as
the difference in person-days of exposure between the Gatlinburg
wildfire and Scenario 3. The dashed line represents zero person-days.
When the black line is above the dashed line, the combined exposure
from prescribed fire and postprescribed burn wildfire is smaller than
wildfire exposure.
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exposures (Figure S14, S15) also indicated that Tennessee,
where the wildland fires occurred, and neighboring North
Carolina experienced negative impacts while Georgia benefited
from prescribed burning. Prescribed fires prevented exposures
to PM2.5 concentration ≥5 μg/m3 almost everywhere expect in
Gatlinburg, because, with their lower emissions, their high
concentration impacts cannot reach to long distances (Figure
6, bottom). Also, the nighttime smoke in the wildfire scenario
increased the smoke concentrations near the fire region, while
prescribed fires which ended before sunset prevented night-
time exposures.

4. DISCUSSION
Prescribed fire is a widely used land management tool primarily
aimed at reducing hazardous fuel loads and restoring and
maintaining ecosystem health. An additional benefit of
prescribed fire is its potential of reducing smoke impacts
even if wildfires occur in previously prescribed burned areas. In
this study, we implemented a new framework to evaluate the
air quality trade-offs between prescribed fires and wildfires and
found that prescribed fires have additional benefits to mitigate
the smoke impacts from the Gatlinburg wildfire, even
considering the occurrence of a postprescribed burn wildfire.
The prescribed burn units were designed with consideration of
firebreaks in our modeling framework. Fire emissions were
estimated taking into account the boundaries of the fires. Using
the fire boundaries to estimate the emissions instead of the
centroids of the fires and fire sizes can better represent the fuel
type and fuel load, which are critical factors for emissions
estimation. Also, the firebreaks design method provided more
realistic estimations of the burned area instead of making

simple assumptions such as equally distributing the burned
area among the prescribed burns. Although the total emissions
can be similar for a different prescribed fire design, such as a
grid-based boundary design (Figure S16), downwind smoke
concentrations can vary due to different daily emission
distributions (Figure S17). The emission distribution under
grid-based boundary design led to a slightly increased
population-weighted concentration due to higher smoke
impacts in Georgia, where the population density is higher
than South Carolina, which suffered more smoke under
prescribed burns designed considering firebreaks.

For the design of counterfactual prescribed burns, the
meteorological conditions are other important factors to be
considered. Although it is possible to relax the criteria for
burning and find potential burn days with less probability of
smoke transport to populated areas,28 this may raise additional
concerns. First, the meteorological conditions are critical for
fire spread and fire control. For instance, if the winds are very
strong and the fuels are excessively dry, there is a risk of
prescribed fires escaping control and evolving into wildfires.
Conversely, if the winds are weak and the fuels are wet, then
ignition becomes challenging. Additionally, selecting the dates
when the smoke is not transported to populated areas increases
the likelihood that the smoke impacts will be felt in areas with
lower population density. These are usually rural areas with
low economic status and limited access to health care, entailing
environmental justice and equity concerns. In this study, we
assumed that the entire area burned in the wildfire would have
to be treated in 19 prescribed burns. We selected all
meteorologically favorable days for conducting prescribed
burns and finished all 19 counterfactual burns in about four

Figure 6. Exposure durations when the PM2.5 concentration is higher than 1.0 μg/m3 (top), 2.0 μg/m3 (middle), and 5.0 μg/m3 (bottom). For
PM2.5 ≥ 1.0 μg/m3, the spatial domain shown is the entire study domain. For the PM2.5 ≥ 2.0 μg/m3 and PM2.5 ≥ 5.0 μg/m3, the domains shown
cover the Tennessee-North Carolina border since PM2.5 impacts are local. The Rx benefit or Rx-prevented exposure duration is calculated by WF
exposure duration minus Rx exposure duration minus post-Rx WF exposure duration.
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months. However, the prescribed burning for such a large area
can last several years. We ignored fuel regrowth between the
burns and the postprescribed burn wildfire, which was about
one year. Improvements in prescribed fire designs can be made
by considering longer-term and more strategic prescribed fire
treatments, such as selecting certain portions of the entire burn
area. Additionally, the design of fire boundaries and the
selection of meteorological conditions for prescribed fire
management are also based on the ecosystem goals, aiming
to protect endangered plants or animals. Incorporating
ecosystem benefits into prescribed fire planning, along with
simulating the evolution of fuel types and fuel loads over an
extended period can be a challenge that needs to be addressed.

For smoke impact comparisons among wildfires, prescribed
burns, and postprescribed burn wildfires, plume heights,
emissions, and meteorological conditions were key factors
affecting the exposures. Although wildfires typically have
higher energy since they are more intense and have enough
heat to ignite the canopy, their average plume heights were less
than those of prescribed burns in this study because while
prescribed fires burned only during the day, wildfires
continued during the nighttime with significant drops in
their plume heights. Nighttime smoke could have significantly
increased local pollution levels since PBL is much lower and
the air is more stagnant compared to daytime. This could have
been a factor that made exposure to wildfire smoke larger than
the exposures to smoke from prescribed burns and
postprescribed burn wildfire. However, the population’s
activity patterns also change from the daytime to the nighttime.
Our study focused on outdoor air quality, but people are
predominantly indoors at night. This pattern adds complexity
to estimating the health impacts and trade-offs between
wildfire and prescribed fire. The reduced emissions from
prescribed burns and the postprescribed burn wildfire could be
another factor that mitigated the exposure compared to the
wildfire. The total emissions were reduced even when we
assumed the occurrence of a postprescribed burn wildfire. In
this study, we reduced the fuel load at the Gatlinburg wildfire
region by the amount consumed in prescribed burns and
assumed the postprescribed burn wildfire burned the same area
as the wildfire. In reality, prescribed fire management could
also reduce the burned area of a wildfire.15 By decreasing the
fuel load, prescribed fires mitigate the heat released by fires,
consequently reducing the rate of fire spread. Considering the
possibility of reduced burned area in a postprescribed burn
wildfire, our emissions and exposure estimates of postpre-
scribed burn wildfire could be overestimates. However, the
BlueSky-CMAQ framework has limitations on fire simulations
because of the relatively coarse resolution of the fuel load data,
simplified emission time profile, and parametrized plume rise
process. The FCCS fuel load map incorporated in BlueSky has
a 1-km resolution. The area of nonburnable (developed/barren
land) region is underestimated compared to the 30-m
resolution NLCD (Table S4) and has spatial discrepancies
(Figure S4, S6). The emissions of prescribed burns are
probably overestimated, especially for the burn on January 14,
2016. On that date, FCCS estimates the effective burned area
as 1040 acres, whereas the NLCD data reports only an area of
480 acres can be burned. As for the diurnal time profile and
plume rise algorithms used by BlueSky, they are simplifications
of the actual processes. Wildfire emissions are expected to have
different time profiles at different spreading stages. However,
BlueSky assumed the burned area was equally distributed to

each day during the burning periods with the same diurnal
profile. Additionally, the parametrized plume height without
consideration of the fire spread has limitations on following
plume heights at different stages of the burn. These
uncertainties and limitations in current modeling framework
degrade simulation performance during the Gatlinburg wildfire
periods. For Tennessee and the nearby states, the performance
metrics for the daily average PM2.5 simulation during wildfire
periods are −29.62% for NMB, 38.41% for NME, and 0.49 for
R (Figure S18 and Table S5). For better estimation of burned
area, consumed fuel load, and the plume height under different
fire cases, coupled fire-atmosphere models such as WRF-
SFIRE,62 QUIC-FIRE,63 and Wildland Urban Interface Fire
Dynamics Simulator (WFDS),64 which simulate the fire
spreading process with complex physics, are probably better
suited. Some previous studies have already conducted coupled
fire-atmosphere modeling to simulate the propagation of the
fire and the formation of the smoke plume in wildfire and
prescribed burns, and showed reasonable agreement with
observations.65,66

Another limitation of the scenario design in the study is the
assumption that prescribed burns would cover the entire
Gatlinburg wildfire area. It is virtually impossible to predict the
area that would burn in a wildfire; consequently, the area
treated by prescribed burns would be different from the
wildfire burned area. In practice, it is more likely that a smaller
area would be treated by prescribed burns because of the
limited resources of land management agencies. Based on an
anonymous reviewer’s suggestion, we decided to evaluate the
sensitivity of the air quality benefits to the extent of the
treatment. For this purpose, we designed a new scenario
(Scenario 3*, Text S2) where about one-half of the area
burned in the Gatlinburg wildfire was treated by prescribed
burns (10 out of the 19 prescribed burns from Scenario 3). We
estimated the corresponding postprescribed burn wildfire
emissions (Table S9), simulated the concentration impacts,
and analyzed smoke person-days (Figure S24). Although the
total emissions from wildland fires are similar in Scenarios 3
and 3*, the postprescribed burn wildfire, which had higher
emissions in Scenario 3* compared to Scenario 3, reduced the
prescribed fire benefits. Similar to Scenario 3, the prescribed
burns in Scenario 3* had benefits at both low (PM2.5 ≤ 1 μg/
m3) and high levels (PM2.5 ≥ 3 μg/m3) of PM2.5 exposures and
disbenefits around 2 μg/m3.

The population-weighted concentration and the person-days
analysis for the wildfire, prescribed fire, and postprescribed
burn wildfire indicated that PM2.5 is a bigger concern
compared to ozone and NO2. In this study, we found that
the prescribed fires reduced the population-weighted smoke
concentrations and decreased the person-days even consider-
ing the postprescribed burn wildfire period. However, the
decrease is marginal and depends on several factors, including
distance from the burn area and the PM threshold. The
benefits of prescribed fires can be explained by several factors.
First, wildfire smoke impacts a more extensive spatial range
compared to prescribed fires. The wildfire with higher plume
height during the daytime can be transported long distances by
stronger daytime winds. The long-distance transport of smoke
potentially affects urban regions with large populations.
Additionally, higher emissions of wildfire lead to higher
concentrations, which increases the intensity of smoke impacts
and population exposure. However, prescribed fires can induce
higher smoke person-days considering the postprescribed burn
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wildfire occurrence since the prescribed fires last longer than
the wildfire, especially for the population close to the fire
region. Person-days benefits from prescribed fires can be
expected when the fires happen in rural regions where the
population is low, and the prescribed fire prevents long-
distance transported smoke effectively. Concerns may arise
when the prescribed fire management is conducted at the
wildland-urban interface.

In this study, since the Gatlinburg wildfire was human
caused, we expected the postprescribed burn wildfire
occurrence. In a large-scale study (e.g., the southeastern U.S.
or CONUS), assuming the probability of postprescribed burn
wildfires as either 1 or 0 may lead to varying conclusions.
Besides the prevented smoke exposure or economic benefits
due to the less harmful air quality impacts, the benefits from
mitigating the direct wildfire damages should also be
considered for policymaking since such economic loss can be
a dominant factor when considering trade-offs between
wildfires and prescribed fires. For instance, the direct damage
caused by the Gatlinburg wildfire was 2 billion U.S. dollars.33

Finally, it should be remembered that there are so many other
trade-off issues to be considered in making fire policy such as
the impacts on vegetation, regional climate, local economies
and much more.
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