Environment International 203 (2025) 109770

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

ELSEVIER

Full length article

Associations between PMs 5 from prescribed burning and emergency
department visits in 11 Southeastern US states

Jennifer D. Stowell " ®, Kamal J. Maji ", Zongrun Li“®, Yongtao Hu

Ambarish Vaidyanathan “®, Chad Milando °, Armistead G. Russell ©, Patrick L. Kinney °,
M. Talat Odman “, Gregory A. Wellenius *

2 Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA

b Department of Public Hedlth, Environments, and Society, London School of Hygiene & Tropical Medicine (LSHTM), Keppel Street, WC1E 7HT London, UK
€ School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Dr NW, Atlanta, GA 30332, USA

ARTICLE INFO ABSTRACT

Handling Editor: Adrian Covaci Longer, more severe wildfire seasons are becoming the norm in fire-prone areas. Prescribed burning is a tool used

to mitigate wildfire spread. However, prescribed burning also contributes to air pollution, including PM; 5

Keywords: (particulate matter with aerodynamic diameter <= 2.5 ym). While the health impacts of wildfire smoke (WFS)
Presi“bed fire are well-studied, relatively less is known about the effects of prescribed fire smoke (PFS). Our study leverages
Smoke

healthcare claims available for residents of 11 Southeastern US states (2013-2021) to investigate the health
impacts associated with PFS. We used a chemical transport model (CTM) and data fusion-based method to es-
timate county-level outdoor PFS-specific PMs 5 concentrations and employed a time-stratified case-crossover
design to quantify the relative risk of emergency department (ED) visits associated with PMj 5 levels lagged 0-3
days. Models adjusted for non-prescribed fire PMy 5 and Os, temperature, humidity, and holidays. We also
examined how relative risks varied across population subgroups. PFS-specific PMy 5 was associated with a
relative risk of ED visits for non-external causes (1.01, 95 % confidence interval (CI): 1.01, 1.02) comparing 4.3
ug/ms (95th percentile) versus 0 pg/m3, upper respiratory infections (1.04, 95 % CI: 1.01, 1.07), and ischemic
heart disease (1.06, 95 % CI: 1.01, 1.11). We did not observe an increased risk for overall respiratory outcomes,
asthma, or COPD, which differs from published WFS findings. Relative risks varied across outcomes and modestly
across population subgroups defined by age and markers of social vulnerability. However, after correcting for
multiple comparisons, these differences were not significant. Some findings differed from associations previously
reported elsewhere for WFS, highlighting the need for direct comparisons of the health impacts of WFS versus
PFS for evaluating safety of prescribed burning as a fire management tool.

Air pollution
Health impacts
Social vulnerability

1. Introduction emerged as a major contributor to outdoor air pollution, accounting for

over 30 % of the nation’s primary emissions of fine particulate matter

Since the 1980s, the US has experienced a dramatic increase in
wildfire activity, with record-breaking fire seasons becoming increas-
ingly common (Westerling et al., 2006). In recent years, heightened
wildfire activity has led to a doubling of the land area burned annually
(Abatzoglou and Williams, 2016). This trend is closely linked to climate
change, which has extended the fire weather season, characterized by
high temperatures and low humidity (Abatzoglou and Williams, 2016).
Wildland fires, including both wildfires and prescribed burns, have
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(PM5 5) (Jaffe et al., 2020).

Prescribed burning is a strategic land management tool used to
reduce the risk of wildfires by reducing hazardous fuel buildup. These
controlled burns are carefully planned and executed under specific
environmental conditions to minimize the risk of uncontrolled spread of
fire and optimize smoke dispersion (Fernandes and Botelho, 2003).
Typically, prescribed fires are conducted as low-intensity burns on days
with lower temperatures and moderate winds. In the Southeastern US,
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prescribed fires play a particularly significant role in land management
practices. This region accounts for approximately 70 % of the nation’s
permits for prescribed fires, which can have substantial implications for
downwind outdoor air quality (Kolden, 2019). In the Southeast, it has
been estimated that prescribed fires are responsible for about 80 % of all
fire-related emissions of PMy5 (Jaffe et al., 2020). During the peak
burning season (January-April), prescribed burning can contribute
more than 20 % of daily ambient PM; 5 levels in affected areas (Maji
et al., 2024). While prescribed burns offer numerous potential ecological
benefits, including helping to mitigate the risk of catastrophic wildfires,
their impact on air quality presents a complex challenge for environ-
mental managers and public health officials (Schweizer and Cisneros,
2017).

Although the health impacts of wildfire smoke (WFS) exposure have
been extensively investigated, the health effects of PFS remain
comparatively understudied (Reid et al., 2016; Liu et al., 2015). While it
has been suggested that PFS may be less impactful to health when
compared to WES, there is still likely to be some impact which is
important to understand if prescribed burning is to be used more ubig-
uitously (Li et al., 2025; Schollaert et al., 2024; Navarro et al., 2018).
This knowledge gap is particularly concerning given that prescribed
burns often occur in closer proximity to populated areas than wildfires,
potentially exposing more people to smoke on a recurring basis
(Williamson et al., 2013). Current research on the health impacts of PFS
is limited. Multiple U.S. land management agencies have adopted pre-
scribed burning as a principal strategy to reduce wildfire activity, and
the annual acreage burned is expected to increase substantially over the
next decade (Sacks et al., 2023; U.S. Forest Service, 2022). Similar to
WES, the PFS research available generally relies on health impact as-
sessments which estimate that prescribed burning could also lead to
higher rates of death and emergency department (ED) visits for respi-
ratory disease, albeit likely less than rates linked to WFS (Li et al., 2025;
Fann et al., 2018). For example, in a previous study using an all-source
PM, 5 concentration response function, we estimated that PFS-related
PMy 5 was responsible for thousands of premature deaths in the
United States (Maji et al., 2018). This illustrates the limitation of pre-
vious studies that have been restricted to using concentration-response
functions derived from epidemiological research on ambient PM, 5 (i.e.,
not source specific) or PMjy 5 specifically from WFS, which may or may
not accurately reflect the health risks associated with PFS (Maji et al.,
2024; Connolly et al., 2024).

Potential differences in the impacts of PFS versus WFS may stem
from differences in the chemical composition and intensity of emissions
(Urbanski et al., 2008). Indeed, the way that an area is burned can have a
considerable influence on the resultant smoke (Clark et al., 2025). Pre-
scribed burns tend to burn cooler and consume less fuels compared to
wildfires and transition slowly from flaming to smoldering stages,
allowing for more complete combustion of fuels (Kelp et al., 2023). As a
result, PFS tends to have lower levels of carbon monoxide (CO), methane
(CHy), polycyclic aromatic hydrocarbons (PAHs), and PM; 5 compared
to WFS from an equal amount of fuel burned (Kiely et al., 2024; O’Dell
et al., 2020). This is in part due to the types of fuel being burned with
prescribed fire targeting finer fuels like grass and underbrush and
wildfires burning deeper duff layers and coarse, woody debris. These
potential differences may lead to differences in health impacts from
these disparate types of smoke (US Environmental Protection Agency,
2021; Jaffe et al., 2020; Aguilera et al., 2021).

To effectively balance the potential benefits versus risks of pre-
scribed burning as a land management tool, it is important to develop a
more specific and comprehensive understanding of the potential health
impacts of PFS, both in the population overall and within potentially
susceptible subgroups. This requires new research on the potential
adverse health impacts associated with PFS. In this study, we leverage a
large healthcare claims dataset to evaluate the associations between
short-term PFS-specific PM3 5 outdoor concentrations and ED visits for
non-external causes and cardiorespiratory diseases in the Southeast
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from 2013 to 2021 and explore how these associations vary across
subgroups defined by individual and community-level characteristics.

2. Data & methods
2.1. Health claims data

Information on ED visits was extracted for 2013-2021 from the
Optum Labs Data Warehouse (OLDW) for eleven southeastern states:
Alabama (AL), Arkansas (AR), Florida (FL), Georgia (GA), Kentucky
(KY), Louisiana (LA), Mississippi (MS), North Carolina (NC), South
Carolina (SC), Tennessee (TN), and Virginia (VA). The OLDW is a lon-
gitudinal, real-world data asset with de-identified administrative claims
and electronic health record (EHR) data and includes healthcare utili-
zation claims for individuals with commercial or Medicare Advantage
health insurance (OPTUMLabs, 2021). Available information includes
individual-level data on county of residence, date of service, primary
discharge diagnosis, age, and sex. Principal diagnosis codes based on the
International Classification of Diseases (utilizing both ICD-9 and ICD-
10) were used to identify cause-specific ED visits for all causes, all
non-external causes, respiratory diseases, and cardiovascular diseases
(Table 1). We also included subcategories of cardiorespiratory disease,
including asthma, bronchitis, chronic obstructive pulmonary disease
(COPD), upper respiratory infections, cardiac arrest, myocardial
infarction, ischemic heart disease, and peripheral cerebrovascular dis-
ease (Maji et al., 2024; , Classification of Diseases, n.d.). The number of
daily visits was calculated and aggregated by county, cause, age (0-17
years, 18-34 years, 35-64 years, 65 years and older), and sex (female,
male).

Table 1
Emergency department visits in the Southeastern US for non-external, cardio-
vascular, and respiratory outcomes, 2013-2021.

Health Outcome ICD9 & ED Visits % Total
ICD 10* N) Visits
Total visits 13,256,521 -
Non-external causes 001-799 10,441,323 78.76
A00-R99
Cardiovascular 390-459 1,391,411 10.50
11-199
Acute myocardial 410 64,770 0.49
infarction 121
Congestive heart 428 151,314 1.14
disease 150
Dysrhythmia 427 222,706 1.68
146.9, 147-149
Ischemic heart disease 410-414 194,477 1.47
120-125
Peripheral 433-437, 440, 443:444, 213,774 1.61
cerebrovascular 451-453
disease 165-168, 170, 173, 174,
177,
180-182, G45, G46
Stroke 362.3, 430, 431, 207,207 1.56
433-436
G45, H34, 160, 161, 163-
165, 167
Respiratory diseases 460-519 1,660,929 12.53
J00-J99
Asthma 493 144,525 1.09
J45
Bronchitis 490 207,293 1.56
J20, J40
COPD 491, 492, 496 255,151 1.92
J41-J44
Upper respiratory 460-465, 466.0 504,496 3.81
infections J00-J06, J21

* Diagnosis codes defined by the 9th and 10th revisions of the International
Classification of Diseases.
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2.2. Prescribed fire smoke and meteorological data

We estimated daily average PFS-specific PM3 5 outdoor concentra-
tions, using 12-km grid resolution with the Weather Research & Fore-
casting (WRF) model coupled with the Community Multiscale Air
Quality (CMAQ) chemical transport model, for 11 US states for all
months of the year from 2013 to 2021, as described elsewhere (Maji
et al., 2024). Briefly, we first identified prescribed burns from the Fire
Inventory (FINN) version 2.5 dataset and then calibrated the burned
area using burn permits records (Li et al., 2023; Wiedinmyer et al.,
2023). The calibrated burned area from prescribed burns was an input to
the BlueSky Modeling Framework to generate hourly PFS-related
emissions. Anthropogenic emissions were obtained from the National
Emission Inventory (NEI) and CMAQ simulations were conducted first
for all emissions and then for emissions that exclude prescribed fire
sources.

FINN data provides both fire emissions and burned areas regardless
of type of fire (prescribed vs wildfire). FINN emissions estimates rely on
generalized global descriptions of fuel types and burned areas from
FINN can be different from the ground-based records. On the other hand,
NEI provides emissions with a separation of wildfires and prescribed
fires which are computed using SMARTFIRE version 2 and various
publicly available datasets (Larkin, et al., 2010; Raffuse, et al., 2009; US
Environmental Protection Agency, 2016, 2018-2020, 2022; Pouliot
et al., 2008; Pouliot et al., 2017). However, since NEI uses a mixture of
satellite and burn permit data emissions do not necessarily have uniform
accuracy across space. Neither FINN nor NEI provide information on
plume rise. To minimize these limitations, we used a fire-type differ-
entiation algorithm to determine prescribed burns among FINN fires (Li
et al., 2023). We modified the FINN burned areas with an adjustment
factor derived from comparisons with burn permit records. Fuel types
and fuel loads in Bluesky are based on the Fuel Characteristic Classifi-
cation System which contains detailed information on fuels in the US
and we utilized the latest emissions factors based on Prichard et al.
(2020). Finally, we used the Briggs plume-rise scheme in Bluesky to
generate three-dimensional PFS emissions inputs to CMAQ.

To improve data accuracy, the results of chemical transport
modeling are fused with PMy 5 observations (Friberg et al., 2016; Maji
et al., 2024). This method adds greater accuracy to the modeling results
by minimizing error across the entire simulation period. However, since
we only have observations for total PMj 5, we can only fuse them with
the results of the simulation for all emissions. The accuracy improve-
ment of the PFS-specific outdoor PM; 5 is achieved through a scaling
approach where simulated PFS-specific outdoor PMs 5 (the difference
between the simulation with all emissions and the one without pre-
scribed fire emissions) is scaled by the effect of data fusion on total
PMy 5. This is accomplished by the following formula:

ACR(x.t) = AR (x, ) x [Cop (. £) /Cyff (%, 1))

where (ACR'?i (x,t)) represents the PFS-specific PMy 5 (or other pollutant)
concentration after scaling, ACS™(x, t) represents simulated PFS-specific
PM, 5 concentration, Cfl’l’; (x,t) represents the data-fused total PMjy 5

concentration, and CJjj(x,t) reflects simulated total PM, 5 concentra-
tion. Additional details on our data fusion methods can be found in Maji
et al. (2024).

Mean daily temperature and relative humidity were obtained
directly from WRF outputs, also at 12-km spatial resolution (Nasa,
2018). Gridded PFS-specific PMy 5, non-prescribed fire PMs 5, non-
prescribed fire O3, and meteorological data were aggregated for each
county in the study domain. Exposure and meteorological values were
extracted from the cells closest to the population center of each county
and aggregated using population weighting to provide population-
averaged exposures for each county and day.
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2.3. Statistical analyses

We modeled the association between mean daily outdoor PFS-
specific PMy 5 and rates of ED visits using a 1-stage time-stratified
case-crossover study design. Cases were aggregated by day and county
and matched to referent days by county, calendar year, calendar month,
and day of week. The case-crossover design effectively controls for
confounding by characteristics that are time-invariant or vary slowly
over time, whether such characteristics are observed or unobserved.
Estimation was performed using conditional Poisson models and a
distributed lag nonlinear framework (DLNM) using lagged values of
outdoor PFS-specific PM; 5 levels and other variables for up to three days
prior to each case and referent day. Based on recent research regarding
WEFS-specific exposures, we assumed a nonlinear concen-
tration-response relationship for PFS-specific PMy 5 using cubic B-
splines and internal knots at the 50th and 90th percentiles for lags up to
3 days (Heft-Neal et al., 2023). All models were adjusted for daily mean
non-prescribed fire PMy 5, non-prescribed fire Os, temperature, relative
humidity, and federal holidays. All modeled odds ratios were inter-
preted as risk ratios (RRs), and we report the RR and its 95 % confidence
interval (CI) associated with the 95th percentile of daily PFS-specific
outdoor PMj 5 levels compared to 0 ug/m>. In order to allow for more
direct comparisons to other WFS and PFS literature, we also repeated
our main analyses using linear terms for exposure and meteorological
variables.

In addition to estimating the overall impact of outdoor concentra-
tions on the population, we investigated potential heterogeneity in the
relative risk across subgroups of individuals defined by categories of age,
sex, and values of the Social Vulnerability Index (SVI) from the US
Centers for Disease Control and Prevention (CDC), SVI subthemes, and
select population characteristics (Agency for Toxic Substances and Dis-
ease Registry, 2020). The SVI is a composite score that includes sub-
themes of socioeconomic status (Theme 1), household characteristics
(Theme 2), racial and ethnic minority status (Theme 3), and housing
type and transportation access (Theme 4). These themes were built using
16 variables from the 5-year American Community Survey (ACS) to
identify at-risk communities. Additionally, we explored potential het-
erogeneity in relative risk by select ACS variables, including poverty,
education, minority status, crowding, and unemployment. We assessed
differences across all subgroups by calculating p-values using the Wald
test and evaluated significance after correcting for multiple comparisons
using a Bonferroni correction.

We performed multiple sensitivity analyses to test the robustness of
the findings. First, we refit the main models with lag-response curves
representing lag 0-7 days (rather than lag 0-3 days) to assess the
sensitivity of results to this modeling assumption. Second, we refit the
main model and treated the main exposure variable as linear rather than
nonlinear. Third, we repeated the model using natural cubic splines
rather than b-splines and evaluated the importance of knot placement
and the number of knots by including one knot at the 50th percentile and
three equally spaced knots. Fourth, to account for the potential influence
of temperature on a longer time scale, we also repeated the main model
using a term for 30-day moving average temperature. Fifth, we
compared our main results to models excluding various combinations of
covariates, including without non-prescribed fire O3, without relative
humidity, without temperature, and without both temperature and
relative humidity. Finally, we ran our analyses excluding 2020 to see
whether differences in health-seeking behavior during the COVID-19
pandemic affected overall health impacts. All analyses were performed
using R version 4.2.1 and the “dlnm” (version 2.4.7) and “survival”
(version 3.3-1) statistical packages (Gasparrini, 2011; Therneau, 2020).
A 2-sided p-value of < 0.05 was used to determine statistical
significance.
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3. Results Table 2
Number and percent of Southeastern US emergency department visits by sub-
3.1. Descriptive statistics group, 2013-2021.
Description Subgroup # ED Visits % Total

Over 13 million ED visits were identified from available records Visits
between 2013 and 2021. When comparing to the total population in Total 13,256,521 -
each state, this cohort includes higher numbers of females, a higher Sex Female 7,404,545 55.9
number of adults, and fewer individuals under the age of 18.The number Male 5,849,476 44.1
of county-level ED visits varied across the study area (Fig. 1A). Respi- Age 0-17 years 1,235,977 9.0

. . i . . . .. 18-34 years 2,189,090 16.5

ratory disease was identified as the primary discharge diagnosis in 12.5 35-64 years 4,927,077 37.2

% of ED visits followed by cardiovascular disease in 10.5 % of visits 65-+ years 4,904,359 37.0
(Table 1). Patients tended to be adults aged 35-64 years (37.2 %) and
were predominantly female (55.9 %, Table 2). When comparing age and
sex distributions of our cohort to US Census data by state, the cohort

A.

‘County ED Visits
Total Number

37-818

819 - 1218
1219 - 1423
1424 - 1822
1823 - 2604
2605 - 4131
4132 - 7119
7120 - 12960
12961 - 24380
24381 - 46708
46709 - 90365
90366 - 175723

Prescribed Fire PM2.5

(Hg/m3)
>1.21

0.91

0.51

i 0.00

Fig. 1. Spatial distribution of emergency department visits and daily mean PFS PM,s, 2013-2021. Panel A: County-level spatial distribution of emergency
department visits. Panel B: 12-km resolution spatial distribution of mean daily prescribed fire PM, 5 concentrations.
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tended to be slightly more female, with higher numbers in the adult age
categories (Tables S2 and S3). Summary statistics for PMy 5, O3, and
meteorological variables are shown in Table S1. After population-
weighting, values for individual county-days ranged from O to 24.9
pg/m® (Fig. 2A), with 4.3 ug/m> representing the 95th percentile of
exposure. Population-weighted daily PFS-specific PMjy 5 concentrations
represented up to 22.9 % of the total daily PM; 5 concentrations across
the study domain, with the highest ratio of PFS-specific PM3 5 occurring
during February and March (Fig. 1B and Fig. 2B). We observed
considerable heterogeneity in daily exposures (Fig. 2C) and in county
median exposures (Fig. 2D) across the study domain. While some
months had higher region-wide levels of PFS-specific PMys, we
observed continuous year-round PFS-related PMs 5 concentrations in
parts of the region. Within the study region, the highest daily PFS-
specific PMy 5 was observed in Kentucky (24.9 yg/m>) on March 16,
2017. However, annual average PFS-specific PMy 5 were highest in
Georgia and Florida.

3.2. Modeled PFS PM; 5 variation reflected in ground PM3 5 observations

To provide more evidence that modeled PFS variation is reflected in
the ground data, we selected 6 Georgia monitoring stations from Macon,
Albany, Valdosta, Columbus and Augusta and analyzed their total PM; 5
observations versus our predictions of PFS PM, 5 during the months of
March 2013-2021 (Figs. S1 and S2A-F). While all these sites are affected
by PFS, Brunswick is located on the Atlantic Intercoastal Waterway and
is mostly protected from PFS. In general, the total PM; 5 observations
increase in sync with the PFS impacts as predicted by our CMAQ model.
However, not all observed PM; 5 increases are accompanied by an in-
crease in PFS PMy s. This is likely due to the PM; 5 increase not being
associated with PFS but another source altogether, or, it may also be due
to PFS that our modeling cannot predict due to satellite invisibility or
inaccurate predicted wind direction.

3.3. Associations between PFS and ED risks

All results are presented as RRs comparing days with extreme levels
of PFS-specific PMy 5 (95th percentile = 4.3 ug/m®) versus days with no
exposure. Fig. 3A illustrates the results from our main model and include
95 % confidence intervals reflecting the uncertainty in the epidemio-
logical models. Outdoor PFS-specific PM; 5 was most strongly associated
with ischemic heart disease (1.06, 95 % CI: 1.01, 1.11), followed by
upper respiratory infections (1.04, 95 % CI: 1.01, 1.07) and non-external
causes (1.01, 95 % CI: 1.01, 1.02). We did not observe elevated relative
risks for any of the remaining causes considered. Concentration-
response functions (Figs. 3B and S4) suggest that the association be-
tween PFS-specific PM; 5 and relative risk of ED visits for both non-
external causes and cardiovascular diseases is monotonic and close to
linear. When considering the lag-response function, we found an
elevated relative risk of ED visits for non-external causes on lag day
0 (Fig. S5 and Table S4), for asthma, overall cardiovascular disease, and
ischemic heart disease on lag day 1, and for upper respiratory infections
on lag day 2. After adjusting our models to include only linear exposure
and meteorological terms, we noted increased relative risk for non-
external causes, overall cardiovascular disease, and ischemic heart dis-
ease (Table S5).

Results were mostly consistent across subgroups of the population
defined by age and sex, apart from statistically significantly higher
relative risk for ED visits for stroke among males (p = 0.04) and for
dysrhythmias among females (p = 0.03, Fig. 4). We also observed only
modest evidence of heterogeneity across subgroups of SVI, subthemes of
SVI, and select neighborhood characteristics. When evaluating sub-
groups of SVI scores, we observed little variation across categories of
SVI, save for higher relative risk for ischemic heart disease observed in
the highest vulnerability category (p = 0.02, Fig. 5). We then examined
differential relative risk by SVI subthemes 1-4 and select individual
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community-level characteristics (Fig. S7 A-D). Higher relative risk of ED
visits for ischemic heart disease ED were associated with the very high
category of Theme 2 (household characteristics, p = 0.04), and some
variation was evident for ED visits for respiratory disease among those in
the very high category of the percentage of individuals without a high
school diploma (p = 0.04). We observed little meaningful differences
across the remaining subgroups (Fig. SSA-E). However, after applying a
Bonferroni post-hoc correction for multiple comparisons, the differences
across groups did not remain significant.

The results of the sensitivity analyses were generally comparable to
the main model for most outcomes (Fig. S9A and B). The largest di-
vergences from the main model were found when removing temperature
or both temperature and relative humidity for non-external causes and
respiratory diseases. After regenerating the curves for lag 0-7 concen-
trations, we did not observe significant elevations in relative risk for
longer lags (Fig. S6). Some outcomes also had slight changes in effect
estimates when modeling using a linear exposure term, including upper
respiratory infection, respiratory diseases, and COPD. While the inter-
pretation of the results is the same, these differences tended to increase
the RRs, confirming the need to include these variables in the model.
Across most models, the exclusion of ozone and choice of knots had very
little impact on the results. However, including a 30-day temperature
covariate tended to slightly reduce the magnitude of associations for
respiratory-related disease categories more than ED visits for
cardiovascular-related outcomes. These changes were not significant
and did not affect the interpretation of the results. Finally, excluding
2020 data from the analyses had minimal impacts across all outcomes.

4. Discussion

Prescribed burning is emerging as a potentially crucial strategy for
mitigating wildfire impacts in the United States and worldwide (Pais
et al., 2023; Wu et al., 2023). However, this practice contributes to
ambient PM, 5 levels, and the health risks associated with PFS pollutants
remain largely unexplored. Given that prescribed burns are planned,
understanding the epidemiology of PFS exposure is important to effec-
tively prepare for and potentially mitigate exposures, thus reducing the
overall health burden related to exposure. To address this knowledge
gap and understand the implications of prescribed fire practices, we
conducted a comprehensive study utilizing a large healthcare claims
dataset from 11 Southeastern US states between 2013 and 2021.
Employing chemical transport modeled and observation-fused PFS-
specific PMy 5 data, we assessed the association between prescribed
burns and the relative risk of ED visits for various health outcomes and
examined how these risks varied across different population subgroups
defined by age and sex. The results revealed that PFS-specific PMs 5 can
account for over 20 % of the daily total PMj 5 across the entire study area
especially in the months of February and March. The ratio of PFS-
specific PMy 5 to total PMy 5 is likely different in other areas of the
county, where prescribed burning is not widely used. However, with
continued increasing wildfire activity, the practice of prescribed burning
is likely to increase elsewhere. For this analysis, we elected to compare
the 95th percentile of exposure to no exposure in order to better un-
derstand how PFS impacts health in individuals experiencing more
extreme exposures. To inform the wider use of prescribed burning, we
estimated positive associations between PFS-specific PMy5 and the
relative risks of ED visits for non-external causes, upper respiratory in-
fections, and ischemic heart disease, with some variation in the associ-
ation across subgroups defined by age, sex, and social vulnerability
measures.

Several studies have estimated the potential health impacts of PFS-
specific PMy 5 based on concentration-response functions from the
ambient pollution and/or wildfire literature (Huang et al., 2019; Kiely
et al., 2024; Rosenberg et al., 2024; Maji et al., 2024; Maji et al., 2024;
Afrin and Garcia-Menendez et al., 2021), but few studies to date have
empirically evaluated the human health impacts of PFS. In one such
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represented by the orange line.

study, Raab et al. (2023) leveraged data from the University of North
Carolina Healthcare System to characterize the relationship between the
number of PFS occurrences and ED visits and hospitalizations for heart
failure (Raab et al., 2023). They found inverse associations with total
hospital visits related to the number of prescribed burns within 1 km, 2
km, and 5 km of the patient’s primary residence. However, the study
focused on burn occurrences and not PMy 5, only included adults, and
results are based on a moderately-sized cohort. In a separate study,
Prunicki et al. (2020) used a convenience sample of participants to es-
timate the impacts of PFS-specific PM; 5 on children’s immune systems
(Prunicki et al., 2019). They found greater health impacts in those
exposed to WFS compared to PFS. However, the sample size and selec-
tion methods limited the generalizability and interpretation of the re-
sults. Our study attempted to move the evidence beyond some of these
limitations by leveraging a much larger population-level sample and
utilizing novel measures of PFS-specific PMjy 5 (Sections 2.1 and 2.2).
Our data analysis uncovered only minimal differences in relative
risks among various demographic and community subgroups exposed to
PFS-specific PMj 5. Notably, males displayed an elevated relative risk of
ED visits for stroke and females demonstrated a statistically significant
higher relative risk for dysrhythmia. Additionally, our investigation into
the relationship between socioeconomic vulnerability and PFS-related
relative risk revealed that housing conditions and education may
contribute to excess relative risk related to ischemic heart disease and
respiratory outcomes, respectively (Islam et al., 2021). While we could
speculate about the mechanisms linking ED visit relative risk to the SVI
and related characteristics, the lack of individual-level data on social
vulnerability contribute to uncertainty in our findings and these

differences did not remain significant after applying a post-hoc Bon-
ferroni correction. Taken together, these results suggest that individuals
are at similar risk of ED visits related to PFS PM> s, regardless of specific
individual or community level characteristics.

While the scope of this study did not include direct comparisons
between PFS and WFS impacts. Many of the results discussed in Section
3.2 diverge from prior findings from the wildfire literature, highlighting
the need for further research into the potential health harms associated
specifically with PFS exposure. For example, we did not observe a sta-
tistically significant link between PFS-specific PM; 5 and overall respi-
ratory outcomes, asthma, or COPD, while a number of prior studies link
these outcomes to WFS PM, 5 (Fann et al., 2018; Deflorio-Barker et al.,
2019; Heaney et al., 2022; Liu et al., 2017; Mirabelli et al., 2009; Reid
etal., 2016, 2019; Stowell et al., 2019). While some differences may be
due to levels of population exposure, some differences might be
explained by smoke pollutant composition. For example, prescribed
burns have been shown to produce less than 50 % of PMj 5 emissions
compared to WFS for the same amount of fuel burned. Wildfires also
often burn under hotter, and more oxygen starved conditions. These
conditions may produce higher concentrations of hazardous pollutants
such as PAHs, some of which are likely carcinogenic (Navarro et al.,
2017; Eriksson et al., 2014). To better understand any potential differ-
ences between the health impacts of WFS and PFS studies are needed
that can examine both exposures in the same health data set and
employing consistent modeling approaches (Li et al., 2025).

This study represents a novel investigation of the potential health
impacts of outdoor PFS-specific PMy 5 concentrations. However, the
results should be considered in light of the following limitations. First,
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the methods used for PFS exposure assessment utilize satellite data,
which often miss smaller burns, burns outside overpass times, and burns
masked by cloud cover. Despite using version 2.5 of FINN, small fires
may still be missing from the analysis, potentially underestimating
actual exposures. Second, the study population includes only individuals
with commercial or Medicare Advantage health insurance, precluding
the study of these exposures in some of the most marginalized pop-
ulations. This systematic exclusion may have led us to underestimate the
true health impacts of PFS in the broader population. Third, despite
important strengths of our exposure modeling strategy, some degree of
exposure error is unavoidable as the health data were only available at
the county level and we lacked data on individual-level time activity
patterns. While the current literature is unclear regarding differences in

effects by spatial resolution, the use of county-level data may mask
higher spikes in exposures at more granular resolutions, suggesting that
these results may underestimate actual impacts of exposure. In addition,
our selection of12-km resolution PFS exposure aggregated to the county
level was chosen as a compromise between extreme computational costs
and the size of exposure fields used for health assessments, However,
this may bias our results either toward or away from the null. While we
are unable to evaluate this bias in our current paper, we do not expect
the bias to be differential. Fourth, the lack of access to individual-level
data limited our ability to fully characterize factors that may affect
vulnerability beyond age, sex, and community-level markers such as
SVL. Finally, this study was only conducted in the Southeastern region of
the US, and results may not be generalizable to other regions. Future
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studies would benefit from more granular data on individual charac-
teristics to minimize errors in exposure assessment and more fully un-
derstand vulnerability.

5. Conclusions

In summary, this study provides novel insights into the potential
adverse health impacts of outdoor PFS-specific PM; 5 concentrations in
the Southeastern US. The results revealed statistically significant ele-
vations in the relative risk of ED visits for non-external causes, ischemic
heart disease, and upper respiratory infections associated with PFS-
specific PMy 5, with only modest variation across subgroups defined
by age, sex, and contextual markers of social vulnerability. While these
results indicate little variation in relative risk across subgroups, addi-
tional data at the individual level is needed to refine subgroup defini-
tions and provide more detailed insights. Interestingly, our main
findings diverge from the broader literature on WFS exposure, which
typically reports strong associations with respiratory disease (including
asthma and COPD) and variation by susceptibility and vulnerability.
These results underscore the value of a more comprehensive under-
standing of the potential adverse health impacts associated with PFS
exposure, as it is increasingly used as a land and fire management tool.
To inform effective decision-making regarding land management prac-
tices and public health protection, additional research directly
comparing the health effects of WFS and PFS-related exposures is
needed.
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