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A B S T R A C T

Longer, more severe wildfire seasons are becoming the norm in fire-prone areas. Prescribed burning is a tool used 
to mitigate wildfire spread. However, prescribed burning also contributes to air pollution, including PM2.5 
(particulate matter with aerodynamic diameter <= 2.5 µm). While the health impacts of wildfire smoke (WFS) 
are well-studied, relatively less is known about the effects of prescribed fire smoke (PFS). Our study leverages 
healthcare claims available for residents of 11 Southeastern US states (2013–2021) to investigate the health 
impacts associated with PFS. We used a chemical transport model (CTM) and data fusion-based method to es
timate county-level outdoor PFS-specific PM2.5 concentrations and employed a time-stratified case-crossover 
design to quantify the relative risk of emergency department (ED) visits associated with PM2.5 levels lagged 0–3 
days. Models adjusted for non-prescribed fire PM2.5 and O3, temperature, humidity, and holidays. We also 
examined how relative risks varied across population subgroups. PFS-specific PM2.5 was associated with a 
relative risk of ED visits for non-external causes (1.01, 95 % confidence interval (CI): 1.01, 1.02) comparing 4.3 
µg/m3 (95th percentile) versus 0 µg/m3, upper respiratory infections (1.04, 95 % CI: 1.01, 1.07), and ischemic 
heart disease (1.06, 95 % CI: 1.01, 1.11). We did not observe an increased risk for overall respiratory outcomes, 
asthma, or COPD, which differs from published WFS findings. Relative risks varied across outcomes and modestly 
across population subgroups defined by age and markers of social vulnerability. However, after correcting for 
multiple comparisons, these differences were not significant. Some findings differed from associations previously 
reported elsewhere for WFS, highlighting the need for direct comparisons of the health impacts of WFS versus 
PFS for evaluating safety of prescribed burning as a fire management tool.

1. Introduction

Since the 1980s, the US has experienced a dramatic increase in 
wildfire activity, with record-breaking fire seasons becoming increas
ingly common (Westerling et al., 2006). In recent years, heightened 
wildfire activity has led to a doubling of the land area burned annually 
(Abatzoglou and Williams, 2016). This trend is closely linked to climate 
change, which has extended the fire weather season, characterized by 
high temperatures and low humidity (Abatzoglou and Williams, 2016). 
Wildland fires, including both wildfires and prescribed burns, have 

emerged as a major contributor to outdoor air pollution, accounting for 
over 30 % of the nation’s primary emissions of fine particulate matter 
(PM2.5) (Jaffe et al., 2020).

Prescribed burning is a strategic land management tool used to 
reduce the risk of wildfires by reducing hazardous fuel buildup. These 
controlled burns are carefully planned and executed under specific 
environmental conditions to minimize the risk of uncontrolled spread of 
fire and optimize smoke dispersion (Fernandes and Botelho, 2003). 
Typically, prescribed fires are conducted as low-intensity burns on days 
with lower temperatures and moderate winds. In the Southeastern US, 
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prescribed fires play a particularly significant role in land management 
practices. This region accounts for approximately 70 % of the nation’s 
permits for prescribed fires, which can have substantial implications for 
downwind outdoor air quality (Kolden, 2019). In the Southeast, it has 
been estimated that prescribed fires are responsible for about 80 % of all 
fire-related emissions of PM2.5 (Jaffe et al., 2020). During the peak 
burning season (January–April), prescribed burning can contribute 
more than 20 % of daily ambient PM2.5 levels in affected areas (Maji 
et al., 2024). While prescribed burns offer numerous potential ecological 
benefits, including helping to mitigate the risk of catastrophic wildfires, 
their impact on air quality presents a complex challenge for environ
mental managers and public health officials (Schweizer and Cisneros, 
2017).

Although the health impacts of wildfire smoke (WFS) exposure have 
been extensively investigated, the health effects of PFS remain 
comparatively understudied (Reid et al., 2016; Liu et al., 2015). While it 
has been suggested that PFS may be less impactful to health when 
compared to WFS, there is still likely to be some impact which is 
important to understand if prescribed burning is to be used more ubiq
uitously (Li et al., 2025; Schollaert et al., 2024; Navarro et al., 2018). 
This knowledge gap is particularly concerning given that prescribed 
burns often occur in closer proximity to populated areas than wildfires, 
potentially exposing more people to smoke on a recurring basis 
(Williamson et al., 2013). Current research on the health impacts of PFS 
is limited. Multiple U.S. land management agencies have adopted pre
scribed burning as a principal strategy to reduce wildfire activity, and 
the annual acreage burned is expected to increase substantially over the 
next decade (Sacks et al., 2023; U.S. Forest Service, 2022). Similar to 
WFS, the PFS research available generally relies on health impact as
sessments which estimate that prescribed burning could also lead to 
higher rates of death and emergency department (ED) visits for respi
ratory disease, albeit likely less than rates linked to WFS (Li et al., 2025; 
Fann et al., 2018). For example, in a previous study using an all-source 
PM2.5 concentration response function, we estimated that PFS-related 
PM2.5 was responsible for thousands of premature deaths in the 
United States (Maji et al., 2018). This illustrates the limitation of pre
vious studies that have been restricted to using concentration–response 
functions derived from epidemiological research on ambient PM2.5 (i.e., 
not source specific) or PM2.5 specifically from WFS, which may or may 
not accurately reflect the health risks associated with PFS (Maji et al., 
2024; Connolly et al., 2024).

Potential differences in the impacts of PFS versus WFS may stem 
from differences in the chemical composition and intensity of emissions 
(Urbanski et al., 2008). Indeed, the way that an area is burned can have a 
considerable influence on the resultant smoke (Clark et al., 2025). Pre
scribed burns tend to burn cooler and consume less fuels compared to 
wildfires and transition slowly from flaming to smoldering stages, 
allowing for more complete combustion of fuels (Kelp et al., 2023). As a 
result, PFS tends to have lower levels of carbon monoxide (CO), methane 
(CH4), polycyclic aromatic hydrocarbons (PAHs), and PM2.5 compared 
to WFS from an equal amount of fuel burned (Kiely et al., 2024; O’Dell 
et al., 2020). This is in part due to the types of fuel being burned with 
prescribed fire targeting finer fuels like grass and underbrush and 
wildfires burning deeper duff layers and coarse, woody debris. These 
potential differences may lead to differences in health impacts from 
these disparate types of smoke (US Environmental Protection Agency, 
2021; Jaffe et al., 2020; Aguilera et al., 2021).

To effectively balance the potential benefits versus risks of pre
scribed burning as a land management tool, it is important to develop a 
more specific and comprehensive understanding of the potential health 
impacts of PFS, both in the population overall and within potentially 
susceptible subgroups. This requires new research on the potential 
adverse health impacts associated with PFS. In this study, we leverage a 
large healthcare claims dataset to evaluate the associations between 
short-term PFS-specific PM2.5 outdoor concentrations and ED visits for 
non-external causes and cardiorespiratory diseases in the Southeast 

from 2013 to 2021 and explore how these associations vary across 
subgroups defined by individual and community-level characteristics.

2. Data & methods

2.1. Health claims data

Information on ED visits was extracted for 2013–2021 from the 
Optum Labs Data Warehouse (OLDW) for eleven southeastern states: 
Alabama (AL), Arkansas (AR), Florida (FL), Georgia (GA), Kentucky 
(KY), Louisiana (LA), Mississippi (MS), North Carolina (NC), South 
Carolina (SC), Tennessee (TN), and Virginia (VA). The OLDW is a lon
gitudinal, real-world data asset with de-identified administrative claims 
and electronic health record (EHR) data and includes healthcare utili
zation claims for individuals with commercial or Medicare Advantage 
health insurance (OPTUMLabs, 2021). Available information includes 
individual-level data on county of residence, date of service, primary 
discharge diagnosis, age, and sex. Principal diagnosis codes based on the 
International Classification of Diseases (utilizing both ICD-9 and ICD- 
10) were used to identify cause-specific ED visits for all causes, all 
non-external causes, respiratory diseases, and cardiovascular diseases 
(Table 1). We also included subcategories of cardiorespiratory disease, 
including asthma, bronchitis, chronic obstructive pulmonary disease 
(COPD), upper respiratory infections, cardiac arrest, myocardial 
infarction, ischemic heart disease, and peripheral cerebrovascular dis
ease (Maji et al., 2024; , Classification of Diseases, n.d.). The number of 
daily visits was calculated and aggregated by county, cause, age (0–17 
years, 18–34 years, 35–64 years, 65 years and older), and sex (female, 
male).

Table 1 
Emergency department visits in the Southeastern US for non-external, cardio
vascular, and respiratory outcomes, 2013–2021.

Health Outcome ICD 9 & 
ICD 10*

ED Visits 
(N)

% Total 
Visits

Total visits ​ 13,256,521 –
Non-external causes 001–799 

A00–R99
10,441,323 78.76

Cardiovascular 390–459 
I1–I99

1,391,411 10.50

Acute myocardial 
infarction

410 
I21

64,770 0.49

Congestive heart 
disease

428 
I50

151,314 1.14

Dysrhythmia 427 
I46.9, I47–I49

222,706 1.68

Ischemic heart disease 410–414 
I20–I25

194,477 1.47

Peripheral 
cerebrovascular 
disease

433–437, 440, 443:444, 
451–453 
I65–I68, I70, I73, I74, 
I77, 
I80–I82, G45, G46

213,774 1.61

Stroke 362.3, 430, 431, 
433–436 
G45, H34, I60, I61, I63- 
I65, I67

207,207 1.56

Respiratory diseases 460–519 
J00-J99

1,660,929 12.53

Asthma 493 
J45

144,525 1.09

Bronchitis 490 
J20, J40

207,293 1.56

COPD 491, 492, 496 
J41-J44

255,151 1.92

Upper respiratory 
infections

460–465, 466.0 
J00-J06, J21

504,496 3.81

* Diagnosis codes defined by the 9th and 10th revisions of the International 
Classification of Diseases.
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2.2. Prescribed fire smoke and meteorological data

We estimated daily average PFS-specific PM2.5 outdoor concentra
tions, using 12-km grid resolution with the Weather Research & Fore
casting (WRF) model coupled with the Community Multiscale Air 
Quality (CMAQ) chemical transport model, for 11 US states for all 
months of the year from 2013 to 2021, as described elsewhere (Maji 
et al., 2024). Briefly, we first identified prescribed burns from the Fire 
Inventory (FINN) version 2.5 dataset and then calibrated the burned 
area using burn permits records (Li et al., 2023; Wiedinmyer et al., 
2023). The calibrated burned area from prescribed burns was an input to 
the BlueSky Modeling Framework to generate hourly PFS-related 
emissions. Anthropogenic emissions were obtained from the National 
Emission Inventory (NEI) and CMAQ simulations were conducted first 
for all emissions and then for emissions that exclude prescribed fire 
sources.

FINN data provides both fire emissions and burned areas regardless 
of type of fire (prescribed vs wildfire). FINN emissions estimates rely on 
generalized global descriptions of fuel types and burned areas from 
FINN can be different from the ground-based records. On the other hand, 
NEI provides emissions with a separation of wildfires and prescribed 
fires which are computed using SMARTFIRE version 2 and various 
publicly available datasets (Larkin, et al., 2010; Raffuse, et al., 2009; US 
Environmental Protection Agency, 2016, 2018–2020, 2022; Pouliot 
et al., 2008; Pouliot et al., 2017). However, since NEI uses a mixture of 
satellite and burn permit data emissions do not necessarily have uniform 
accuracy across space. Neither FINN nor NEI provide information on 
plume rise. To minimize these limitations, we used a fire-type differ
entiation algorithm to determine prescribed burns among FINN fires (Li 
et al., 2023). We modified the FINN burned areas with an adjustment 
factor derived from comparisons with burn permit records. Fuel types 
and fuel loads in Bluesky are based on the Fuel Characteristic Classifi
cation System which contains detailed information on fuels in the US 
and we utilized the latest emissions factors based on Prichard et al. 
(2020). Finally, we used the Briggs plume-rise scheme in Bluesky to 
generate three-dimensional PFS emissions inputs to CMAQ.

To improve data accuracy, the results of chemical transport 
modeling are fused with PM2.5 observations (Friberg et al., 2016; Maji 
et al., 2024). This method adds greater accuracy to the modeling results 
by minimizing error across the entire simulation period. However, since 
we only have observations for total PM2.5, we can only fuse them with 
the results of the simulation for all emissions. The accuracy improve
ment of the PFS-specific outdoor PM2.5 is achieved through a scaling 
approach where simulated PFS-specific outdoor PM2.5 (the difference 
between the simulation with all emissions and the one without pre
scribed fire emissions) is scaled by the effect of data fusion on total 
PM2.5. This is accomplished by the following formula: 

ΔCDFRx(x, t) = ΔCsimRx (x, t) × [CDFall (x, t)/C
sim
all (x, t)]

where (ΔCDFRx(x, t)) represents the PFS-specific PM2.5 (or other pollutant) 
concentration after scaling, ΔCsimRx (x, t) represents simulated PFS-specific 
PM2.5 concentration, CDFall (x, t) represents the data-fused total PM2.5 

concentration, and Csimall (x, t) reflects simulated total PM2.5 concentra
tion. Additional details on our data fusion methods can be found in Maji 
et al. (2024).

Mean daily temperature and relative humidity were obtained 
directly from WRF outputs, also at 12-km spatial resolution (Nasa, 
2018). Gridded PFS-specific PM2.5, non-prescribed fire PM2.5, non- 
prescribed fire O3, and meteorological data were aggregated for each 
county in the study domain. Exposure and meteorological values were 
extracted from the cells closest to the population center of each county 
and aggregated using population weighting to provide population- 
averaged exposures for each county and day.

2.3. Statistical analyses

We modeled the association between mean daily outdoor PFS- 
specific PM2.5 and rates of ED visits using a 1-stage time-stratified 
case-crossover study design. Cases were aggregated by day and county 
and matched to referent days by county, calendar year, calendar month, 
and day of week. The case-crossover design effectively controls for 
confounding by characteristics that are time-invariant or vary slowly 
over time, whether such characteristics are observed or unobserved. 
Estimation was performed using conditional Poisson models and a 
distributed lag nonlinear framework (DLNM) using lagged values of 
outdoor PFS-specific PM2.5 levels and other variables for up to three days 
prior to each case and referent day. Based on recent research regarding 
WFS-specific exposures, we assumed a nonlinear concen
tration–response relationship for PFS-specific PM2.5 using cubic B- 
splines and internal knots at the 50th and 90th percentiles for lags up to 
3 days (Heft-Neal et al., 2023). All models were adjusted for daily mean 
non-prescribed fire PM2.5, non-prescribed fire O3, temperature, relative 
humidity, and federal holidays. All modeled odds ratios were inter
preted as risk ratios (RRs), and we report the RR and its 95 % confidence 
interval (CI) associated with the 95th percentile of daily PFS-specific 
outdoor PM2.5 levels compared to 0 µg/m3. In order to allow for more 
direct comparisons to other WFS and PFS literature, we also repeated 
our main analyses using linear terms for exposure and meteorological 
variables.

In addition to estimating the overall impact of outdoor concentra
tions on the population, we investigated potential heterogeneity in the 
relative risk across subgroups of individuals defined by categories of age, 
sex, and values of the Social Vulnerability Index (SVI) from the US 
Centers for Disease Control and Prevention (CDC), SVI subthemes, and 
select population characteristics (Agency for Toxic Substances and Dis
ease Registry, 2020). The SVI is a composite score that includes sub
themes of socioeconomic status (Theme 1), household characteristics 
(Theme 2), racial and ethnic minority status (Theme 3), and housing 
type and transportation access (Theme 4). These themes were built using 
16 variables from the 5-year American Community Survey (ACS) to 
identify at-risk communities. Additionally, we explored potential het
erogeneity in relative risk by select ACS variables, including poverty, 
education, minority status, crowding, and unemployment. We assessed 
differences across all subgroups by calculating p-values using the Wald 
test and evaluated significance after correcting for multiple comparisons 
using a Bonferroni correction.

We performed multiple sensitivity analyses to test the robustness of 
the findings. First, we refit the main models with lag-response curves 
representing lag 0–7 days (rather than lag 0–3 days) to assess the 
sensitivity of results to this modeling assumption. Second, we refit the 
main model and treated the main exposure variable as linear rather than 
nonlinear. Third, we repeated the model using natural cubic splines 
rather than b-splines and evaluated the importance of knot placement 
and the number of knots by including one knot at the 50th percentile and 
three equally spaced knots. Fourth, to account for the potential influence 
of temperature on a longer time scale, we also repeated the main model 
using a term for 30-day moving average temperature. Fifth, we 
compared our main results to models excluding various combinations of 
covariates, including without non-prescribed fire O3, without relative 
humidity, without temperature, and without both temperature and 
relative humidity. Finally, we ran our analyses excluding 2020 to see 
whether differences in health-seeking behavior during the COVID-19 
pandemic affected overall health impacts. All analyses were performed 
using R version 4.2.1 and the “dlnm” (version 2.4.7) and “survival” 
(version 3.3–1) statistical packages (Gasparrini, 2011; Therneau, 2020). 
A 2-sided p-value of < 0.05 was used to determine statistical 
significance.
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3. Results

3.1. Descriptive statistics

Over 13 million ED visits were identified from available records 
between 2013 and 2021. When comparing to the total population in 
each state, this cohort includes higher numbers of females, a higher 
number of adults, and fewer individuals under the age of 18.The number 
of county-level ED visits varied across the study area (Fig. 1A). Respi
ratory disease was identified as the primary discharge diagnosis in 12.5 
% of ED visits followed by cardiovascular disease in 10.5 % of visits 
(Table 1). Patients tended to be adults aged 35–64 years (37.2 %) and 
were predominantly female (55.9 %, Table 2). When comparing age and 
sex distributions of our cohort to US Census data by state, the cohort 

Fig. 1. Spatial distribution of emergency department visits and daily mean PFS PM2.5, 2013–2021. Panel A: County-level spatial distribution of emergency 
department visits. Panel B: 12-km resolution spatial distribution of mean daily prescribed fire PM2.5 concentrations.

Table 2 
Number and percent of Southeastern US emergency department visits by sub
group, 2013–2021.

Description Subgroup # ED Visits % Total 
Visits

Total ​ 13,256,521 –
Sex Female 7,404,545 55.9
​ Male 5,849,476 44.1
Age 0–17 years 1,235,977 9.0
​ 18–34 years 2,189,090 16.5
​ 35–64 years 4,927,077 37.2
​ 65+ years 4,904,359 37.0
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tended to be slightly more female, with higher numbers in the adult age 
categories (Tables S2 and S3). Summary statistics for PM2.5, O3, and 
meteorological variables are shown in Table S1. After population- 
weighting, values for individual county-days ranged from 0 to 24.9 
µg/m3 (Fig. 2A), with 4.3 µg/m3 representing the 95th percentile of 
exposure. Population-weighted daily PFS-specific PM2.5 concentrations 
represented up to 22.9 % of the total daily PM2.5 concentrations across 
the study domain, with the highest ratio of PFS-specific PM2.5 occurring 
during February and March (Fig. 1B and Fig. 2B). We observed 
considerable heterogeneity in daily exposures (Fig. 2C) and in county 
median exposures (Fig. 2D) across the study domain. While some 
months had higher region-wide levels of PFS-specific PM2.5, we 
observed continuous year-round PFS-related PM2.5 concentrations in 
parts of the region. Within the study region, the highest daily PFS- 
specific PM2.5 was observed in Kentucky (24.9 µg/m3) on March 16, 
2017. However, annual average PFS-specific PM2.5 were highest in 
Georgia and Florida.

3.2. Modeled PFS PM2.5 variation reflected in ground PM2.5 observations

To provide more evidence that modeled PFS variation is reflected in 
the ground data, we selected 6 Georgia monitoring stations from Macon, 
Albany, Valdosta, Columbus and Augusta and analyzed their total PM2.5 
observations versus our predictions of PFS PM2.5 during the months of 
March 2013–2021 (Figs. S1 and S2A–F). While all these sites are affected 
by PFS, Brunswick is located on the Atlantic Intercoastal Waterway and 
is mostly protected from PFS. In general, the total PM2.5 observations 
increase in sync with the PFS impacts as predicted by our CMAQ model. 
However, not all observed PM2.5 increases are accompanied by an in
crease in PFS PM2.5. This is likely due to the PM2.5 increase not being 
associated with PFS but another source altogether, or, it may also be due 
to PFS that our modeling cannot predict due to satellite invisibility or 
inaccurate predicted wind direction.

3.3. Associations between PFS and ED risks

All results are presented as RRs comparing days with extreme levels 
of PFS-specific PM2.5 (95th percentile = 4.3 µg/m3) versus days with no 
exposure. Fig. 3A illustrates the results from our main model and include 
95 % confidence intervals reflecting the uncertainty in the epidemio
logical models. Outdoor PFS-specific PM2.5 was most strongly associated 
with ischemic heart disease (1.06, 95 % CI: 1.01, 1.11), followed by 
upper respiratory infections (1.04, 95 % CI: 1.01, 1.07) and non-external 
causes (1.01, 95 % CI: 1.01, 1.02). We did not observe elevated relative 
risks for any of the remaining causes considered. Concentration- 
response functions (Figs. 3B and S4) suggest that the association be
tween PFS-specific PM2.5 and relative risk of ED visits for both non- 
external causes and cardiovascular diseases is monotonic and close to 
linear. When considering the lag-response function, we found an 
elevated relative risk of ED visits for non-external causes on lag day 
0 (Fig. S5 and Table S4), for asthma, overall cardiovascular disease, and 
ischemic heart disease on lag day 1, and for upper respiratory infections 
on lag day 2. After adjusting our models to include only linear exposure 
and meteorological terms, we noted increased relative risk for non- 
external causes, overall cardiovascular disease, and ischemic heart dis
ease (Table S5).

Results were mostly consistent across subgroups of the population 
defined by age and sex, apart from statistically significantly higher 
relative risk for ED visits for stroke among males (p = 0.04) and for 
dysrhythmias among females (p = 0.03, Fig. 4). We also observed only 
modest evidence of heterogeneity across subgroups of SVI, subthemes of 
SVI, and select neighborhood characteristics. When evaluating sub
groups of SVI scores, we observed little variation across categories of 
SVI, save for higher relative risk for ischemic heart disease observed in 
the highest vulnerability category (p = 0.02, Fig. 5). We then examined 
differential relative risk by SVI subthemes 1–4 and select individual 

community-level characteristics (Fig. S7 A-D). Higher relative risk of ED 
visits for ischemic heart disease ED were associated with the very high 
category of Theme 2 (household characteristics, p = 0.04), and some 
variation was evident for ED visits for respiratory disease among those in 
the very high category of the percentage of individuals without a high 
school diploma (p = 0.04). We observed little meaningful differences 
across the remaining subgroups (Fig. S8A–E). However, after applying a 
Bonferroni post-hoc correction for multiple comparisons, the differences 
across groups did not remain significant.

The results of the sensitivity analyses were generally comparable to 
the main model for most outcomes (Fig. S9A and B). The largest di
vergences from the main model were found when removing temperature 
or both temperature and relative humidity for non-external causes and 
respiratory diseases. After regenerating the curves for lag 0–7 concen
trations, we did not observe significant elevations in relative risk for 
longer lags (Fig. S6). Some outcomes also had slight changes in effect 
estimates when modeling using a linear exposure term, including upper 
respiratory infection, respiratory diseases, and COPD. While the inter
pretation of the results is the same, these differences tended to increase 
the RRs, confirming the need to include these variables in the model. 
Across most models, the exclusion of ozone and choice of knots had very 
little impact on the results. However, including a 30-day temperature 
covariate tended to slightly reduce the magnitude of associations for 
respiratory-related disease categories more than ED visits for 
cardiovascular-related outcomes. These changes were not significant 
and did not affect the interpretation of the results. Finally, excluding 
2020 data from the analyses had minimal impacts across all outcomes.

4. Discussion

Prescribed burning is emerging as a potentially crucial strategy for 
mitigating wildfire impacts in the United States and worldwide (Pais 
et al., 2023; Wu et al., 2023). However, this practice contributes to 
ambient PM2.5 levels, and the health risks associated with PFS pollutants 
remain largely unexplored. Given that prescribed burns are planned, 
understanding the epidemiology of PFS exposure is important to effec
tively prepare for and potentially mitigate exposures, thus reducing the 
overall health burden related to exposure. To address this knowledge 
gap and understand the implications of prescribed fire practices, we 
conducted a comprehensive study utilizing a large healthcare claims 
dataset from 11 Southeastern US states between 2013 and 2021. 
Employing chemical transport modeled and observation-fused PFS- 
specific PM2.5 data, we assessed the association between prescribed 
burns and the relative risk of ED visits for various health outcomes and 
examined how these risks varied across different population subgroups 
defined by age and sex. The results revealed that PFS-specific PM2.5 can 
account for over 20 % of the daily total PM2.5 across the entire study area 
especially in the months of February and March. The ratio of PFS- 
specific PM2.5 to total PM2.5 is likely different in other areas of the 
county, where prescribed burning is not widely used. However, with 
continued increasing wildfire activity, the practice of prescribed burning 
is likely to increase elsewhere. For this analysis, we elected to compare 
the 95th percentile of exposure to no exposure in order to better un
derstand how PFS impacts health in individuals experiencing more 
extreme exposures. To inform the wider use of prescribed burning, we 
estimated positive associations between PFS-specific PM2.5 and the 
relative risks of ED visits for non-external causes, upper respiratory in
fections, and ischemic heart disease, with some variation in the associ
ation across subgroups defined by age, sex, and social vulnerability 
measures.

Several studies have estimated the potential health impacts of PFS- 
specific PM2.5 based on concentration–response functions from the 
ambient pollution and/or wildfire literature (Huang et al., 2019; Kiely 
et al., 2024; Rosenberg et al., 2024; Maji et al., 2024; Maji et al., 2024; 
Afrin and Garcia-Menendez et al., 2021), but few studies to date have 
empirically evaluated the human health impacts of PFS. In one such 
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Fig. 2. Time series data for county-level prescribed fire-specific PM2.5 from 2013 to 2021 in the Southeastern US. Panel A) population-weighted daily mean con
centrations of prescribed fire PM2.5 by county and day across the study period. Panel B) Population-weighted monthly mean prescribed fire PM2.5 as a ratio of total 
PM2.5 for the entire study domain and across the study period. Panel C: Density of modeled PFS PM2.5 as a percentage of the total data points, truncated to 10 µg/m3. 
Panel D) Median county PFS PM2.5 concentrations for the entire study period truncated to 10 µg/m3.
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study, Raab et al. (2023) leveraged data from the University of North 
Carolina Healthcare System to characterize the relationship between the 
number of PFS occurrences and ED visits and hospitalizations for heart 
failure (Raab et al., 2023). They found inverse associations with total 
hospital visits related to the number of prescribed burns within 1 km, 2 
km, and 5 km of the patient’s primary residence. However, the study 
focused on burn occurrences and not PM2.5, only included adults, and 
results are based on a moderately-sized cohort. In a separate study, 
Prunicki et al. (2020) used a convenience sample of participants to es
timate the impacts of PFS-specific PM2.5 on children’s immune systems 
(Prunicki et al., 2019). They found greater health impacts in those 
exposed to WFS compared to PFS. However, the sample size and selec
tion methods limited the generalizability and interpretation of the re
sults. Our study attempted to move the evidence beyond some of these 
limitations by leveraging a much larger population-level sample and 
utilizing novel measures of PFS-specific PM2.5 (Sections 2.1 and 2.2).

Our data analysis uncovered only minimal differences in relative 
risks among various demographic and community subgroups exposed to 
PFS-specific PM2.5. Notably, males displayed an elevated relative risk of 
ED visits for stroke and females demonstrated a statistically significant 
higher relative risk for dysrhythmia. Additionally, our investigation into 
the relationship between socioeconomic vulnerability and PFS-related 
relative risk revealed that housing conditions and education may 
contribute to excess relative risk related to ischemic heart disease and 
respiratory outcomes, respectively (Islam et al., 2021). While we could 
speculate about the mechanisms linking ED visit relative risk to the SVI 
and related characteristics, the lack of individual-level data on social 
vulnerability contribute to uncertainty in our findings and these 

differences did not remain significant after applying a post-hoc Bon
ferroni correction. Taken together, these results suggest that individuals 
are at similar risk of ED visits related to PFS PM2.5, regardless of specific 
individual or community level characteristics.

While the scope of this study did not include direct comparisons 
between PFS and WFS impacts. Many of the results discussed in Section 
3.2 diverge from prior findings from the wildfire literature, highlighting 
the need for further research into the potential health harms associated 
specifically with PFS exposure. For example, we did not observe a sta
tistically significant link between PFS-specific PM2.5 and overall respi
ratory outcomes, asthma, or COPD, while a number of prior studies link 
these outcomes to WFS PM2.5 (Fann et al., 2018; Deflorio-Barker et al., 
2019; Heaney et al., 2022; Liu et al., 2017; Mirabelli et al., 2009; Reid 
et al., 2016, 2019; Stowell et al., 2019). While some differences may be 
due to levels of population exposure, some differences might be 
explained by smoke pollutant composition. For example, prescribed 
burns have been shown to produce less than 50 % of PM2.5 emissions 
compared to WFS for the same amount of fuel burned. Wildfires also 
often burn under hotter, and more oxygen starved conditions. These 
conditions may produce higher concentrations of hazardous pollutants 
such as PAHs, some of which are likely carcinogenic (Navarro et al., 
2017; Eriksson et al., 2014). To better understand any potential differ
ences between the health impacts of WFS and PFS studies are needed 
that can examine both exposures in the same health data set and 
employing consistent modeling approaches (Li et al., 2025).

This study represents a novel investigation of the potential health 
impacts of outdoor PFS-specific PM2.5 concentrations. However, the 
results should be considered in light of the following limitations. First, 

Fig. 3. Associations of outdoor prescribed fire-specific PM2.5 concentrations with emergency department visits for specific causes in the Southeastern US from 2013 
to 2021. Panel A: Changes in relative risk associated with 4.3 µg/m3 (95th percentile) compared to 0 µg/m3. Panel B: Exposure-response curves for main categories of 
disease and select outcomes with statistically significant higher relative risk at points along the spectrum of concentrations with 4.3 µg/m3 (95th percentile) of PFS 
represented by the orange line.
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the methods used for PFS exposure assessment utilize satellite data, 
which often miss smaller burns, burns outside overpass times, and burns 
masked by cloud cover. Despite using version 2.5 of FINN, small fires 
may still be missing from the analysis, potentially underestimating 
actual exposures. Second, the study population includes only individuals 
with commercial or Medicare Advantage health insurance, precluding 
the study of these exposures in some of the most marginalized pop
ulations. This systematic exclusion may have led us to underestimate the 
true health impacts of PFS in the broader population. Third, despite 
important strengths of our exposure modeling strategy, some degree of 
exposure error is unavoidable as the health data were only available at 
the county level and we lacked data on individual-level time activity 
patterns. While the current literature is unclear regarding differences in 

effects by spatial resolution, the use of county-level data may mask 
higher spikes in exposures at more granular resolutions, suggesting that 
these results may underestimate actual impacts of exposure. In addition, 
our selection of12-km resolution PFS exposure aggregated to the county 
level was chosen as a compromise between extreme computational costs 
and the size of exposure fields used for health assessments, However, 
this may bias our results either toward or away from the null. While we 
are unable to evaluate this bias in our current paper, we do not expect 
the bias to be differential. Fourth, the lack of access to individual-level 
data limited our ability to fully characterize factors that may affect 
vulnerability beyond age, sex, and community-level markers such as 
SVI. Finally, this study was only conducted in the Southeastern region of 
the US, and results may not be generalizable to other regions. Future 

Fig. 4. Stratified impacts of outdoor prescribed fire-specific PM2.5 levels on ED visits. Risk ratios and 95 % confidence intervals comparing 4.3 µg/m3 (95th 
percentile) to 0 µg/m3 stratified by subgroups of age (Panel A) and sex (Panel B).
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studies would benefit from more granular data on individual charac
teristics to minimize errors in exposure assessment and more fully un
derstand vulnerability.

5. Conclusions

In summary, this study provides novel insights into the potential 
adverse health impacts of outdoor PFS-specific PM2.5 concentrations in 
the Southeastern US. The results revealed statistically significant ele
vations in the relative risk of ED visits for non-external causes, ischemic 
heart disease, and upper respiratory infections associated with PFS- 
specific PM2.5, with only modest variation across subgroups defined 
by age, sex, and contextual markers of social vulnerability. While these 
results indicate little variation in relative risk across subgroups, addi
tional data at the individual level is needed to refine subgroup defini
tions and provide more detailed insights. Interestingly, our main 
findings diverge from the broader literature on WFS exposure, which 
typically reports strong associations with respiratory disease (including 
asthma and COPD) and variation by susceptibility and vulnerability. 
These results underscore the value of a more comprehensive under
standing of the potential adverse health impacts associated with PFS 
exposure, as it is increasingly used as a land and fire management tool. 
To inform effective decision-making regarding land management prac
tices and public health protection, additional research directly 
comparing the health effects of WFS and PFS-related exposures is 
needed.
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